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Abstract

Feature pyramids are a basic component in recognition

systems for detecting objects at different scales. But recent

deep learning object detectors have avoided pyramid rep-

resentations, in part because they are compute and memory

intensive. In this paper, we exploit the inherent multi-scale,

pyramidal hierarchy of deep convolutional networks to con-

struct feature pyramids with marginal extra cost. A top-

down architecture with lateral connections is developed for

building high-level semantic feature maps at all scales. This

architecture, called a Feature Pyramid Network (FPN),

shows significant improvement as a generic feature extrac-

tor in several applications. Using FPN in a basic Faster

R-CNN system, our method achieves state-of-the-art single-

model results on the COCO detection benchmark without

bells and whistles, surpassing all existing single-model en-

tries including those from the COCO 2016 challenge win-

ners. In addition, our method can run at 5 FPS on a GPU

and thus is a practical and accurate solution to multi-scale

object detection. Code will be made publicly available.

1. Introduction
Recognizing objects at vastly different scales is a fun-

damental challenge in computer vision. Feature pyramids

built upon image pyramids (for short we call these featur-

ized image pyramids) form the basis of a standard solution
[1] (Fig. 1(a)). These pyramids are scale-invariant in the
sense that an object’s scale change is offset by shifting its
level in the pyramid. Intuitively, this property enables a
model to detect objects across a large range of scales by
scanning the model over both positions and pyramid levels.

Featurized image pyramids were heavily used in the
era of hand-engineered features [5, 24]. They were so
critical that object detectors like DPM [7] required dense
scale sampling to achieve good results (e.g., 10 scales per
octave). For recognition tasks, engineered features have
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Figure 1. (a) Using an image pyramid to build a feature pyramid.
Features are computed on each of the image scales independently,
which is slow to compute. (b) Recent detection systems have opted
to use only single scale features for faster detection. (c) An alter-
native is to reuse the pyramidal feature hierarchy computed by a
ConvNet as if it were a featurized image pyramid. (d) Our pro-
posed Feature Pyramid Network (FPN) is fast like (b) and (c), but
more accurate. In this figure, feature maps are indicate by blue
outlines and and thicker outlines denote higher level features.

largely been replaced with features computed by deep con-
volutional networks (ConvNets) [18, 19]. Aside from being
capable of representing higher-level semantics, ConvNets
are also more robust to variance in scale and thus facilitate
recognition from features computed on a single input scale
[14, 11, 28] (Fig. 1(b)). But even with this robustness, pyra-
mids are still needed to get the most accurate results. All re-
cent top entries in the ImageNet [31] and COCO [20] detec-
tion challenges use multi-scale testing on featurized image
pyramids (e.g., [15, 33]). The principle advantage of fea-
turizing each level of an image pyramid is that it produces
a multi-scale feature representation in which all levels are

semantically strong, including the high-resolution levels.
Nevertheless, featurizing each level of an image pyra-

mid has obvious limitations. Inference time increases con-
siderably (e.g., by four times [11]), making this approach
impractical for real applications. Moreover, training deep
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which is slow to compute. (b) Recent detection systems have opted
to use only single scale features for faster detection. (c) An alter-
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posed Feature Pyramid Network (FPN) is fast like (b) and (c), but
more accurate. In this figure, feature maps are indicate by blue
outlines and and thicker outlines denote higher level features.

largely been replaced with features computed by deep con-
volutional networks (ConvNets) [18, 19]. Aside from being
capable of representing higher-level semantics, ConvNets
are also more robust to variance in scale and thus facilitate
recognition from features computed on a single input scale
[14, 11, 28] (Fig. 1(b)). But even with this robustness, pyra-
mids are still needed to get the most accurate results. All re-
cent top entries in the ImageNet [31] and COCO [20] detec-
tion challenges use multi-scale testing on featurized image
pyramids (e.g., [15, 33]). The principle advantage of fea-
turizing each level of an image pyramid is that it produces
a multi-scale feature representation in which all levels are

semantically strong, including the high-resolution levels.
Nevertheless, featurizing each level of an image pyra-

mid has obvious limitations. Inference time increases con-
siderably (e.g., by four times [11]), making this approach
impractical for real applications. Moreover, training deep
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Unified Framework
• Mask R-CNN architecture
• Shared FPN backbone
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Figure 1: A Squeeze-and-Excitation block.

features in a class agnostic manner, bolstering the quality of
the shared lower level representations. In later layers, the
SE block becomes increasingly specialised, and responds
to different inputs in a highly class-specific manner. Con-
sequently, the benefits of feature recalibration conducted by
SE blocks can be accumulated through the entire network.

The development of new CNN architectures is a chal-
lenging engineering task, typically involving the selection
of many new hyperparameters and layer configurations. By
contrast, the design of the SE block outlined above is sim-
ple, and can be used directly with existing state-of-the-art
architectures whose modules can be strengthened by direct
replacement with their SE counterparts.

Moreover, as shown in Sec. 4, SE blocks are computa-
tionally lightweight and impose only a slight increase in
model complexity and computational burden. To support
these claims, we develop several SENets and provide an
extensive evaluation on the ImageNet 2012 dataset [34].
To demonstrate their general applicability, we also present
results beyond ImageNet, indicating that the proposed ap-
proach is not restricted to a specific dataset or a task.

Using SENets, we won the first place in the ILSVRC
2017 classification competition. Our top performing model
ensemble achieves a 2.251% top-5 error on the test set1.
This represents a ⇠25% relative improvement in compari-
son to the winner entry of the previous year (with a top-5
error of 2.991%).

2. Related Work

Deep architectures. VGGNets [39] and Inception mod-
els [43] demonstrated the benefits of increasing depth.
Batch normalization (BN) [16] improved gradient propa-
gation by inserting units to regulate layer inputs, stabilis-
ing the learning process. ResNets [10, 11] showed the ef-
fectiveness of learning deeper networks through the use of
identity-based skip connections. Highway networks [40]
employed a gating mechanism to regulate shortcut connec-
tions. Reformulations of the connections between network
layers [5, 14] have been shown to further improve the learn-
ing and representational properties of deep networks.

An alternative line of research has explored ways to tune
the functional form of the modular components of a net-
work. Grouped convolutions can be used to increase car-

1http://image-net.org/challenges/LSVRC/2017/results

dinality (the size of the set of transformations) [15, 47].
Multi-branch convolutions can be interpreted as a generali-
sation of this concept, enabling more flexible compositions
of operators [16, 42, 43, 44]. Recently, compositions which
have been learned in an automated manner [26, 54, 55]
have shown competitive performance. Cross-channel cor-
relations are typically mapped as new combinations of fea-
tures, either independently of spatial structure [6, 20] or
jointly by using standard convolutional filters [24] with 1⇥1
convolutions. Much of this work has concentrated on the
objective of reducing model and computational complexity,
reflecting an assumption that channel relationships can be
formulated as a composition of instance-agnostic functions
with local receptive fields. In contrast, we claim that provid-
ing the unit with a mechanism to explicitly model dynamic,
non-linear dependencies between channels using global in-
formation can ease the learning process, and significantly
enhance the representational power of the network.

Attention and gating mechanisms. Attention can be
viewed, broadly, as a tool to bias the allocation of available
processing resources towards the most informative compo-
nents of an input signal [17, 18, 22, 29, 32]. The benefits
of such a mechanism have been shown across a range of
tasks, from localisation and understanding in images [3, 19]
to sequence-based models [2, 28]. It is typically imple-
mented in combination with a gating function (e.g. a soft-
max or sigmoid) and sequential techniques [12, 41]. Re-
cent work has shown its applicability to tasks such as im-
age captioning [4, 48] and lip reading [7]. In these appli-
cations, it is often used on top of one or more layers rep-
resenting higher-level abstractions for adaptation between
modalities. Wang et al. [46] introduce a powerful trunk-
and-mask attention mechanism using an hourglass module
[31]. This high capacity unit is inserted into deep resid-
ual networks between intermediate stages. In contrast, our
proposed SE block is a lightweight gating mechanism, spe-
cialised to model channel-wise relationships in a computa-
tionally efficient manner and designed to enhance the repre-
sentational power of basic modules throughout the network.

3. Squeeze-and-Excitation Blocks

The Squeeze-and-Excitation block is a computational
unit which can be constructed for any given transformation
Ftr : X ! U, X 2 RH

0⇥W
0⇥C

0
,U 2 RH⇥W⇥C . For

2
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Cai Z, Vasconcelos N. Cascade R-CNN: Delving Into High Quality Object Detection[J]. CVPR 2018.
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Figure 1: A Squeeze-and-Excitation block.
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• Using multi-scale training

• Adopt DCN & Nonlocal
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• ResNet50 baseline

• Using multi-scale training

• Adopt DCN & Nonlocal
& Adaptive RoI pooling

• Cascade RCNN
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• ResNet50 baseline

• Using multi-scale training
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• Cascade RCNN

• Cascade Mask
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Shared FPN Inference Thing
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• ResNet50 baseline

• Using multi-scale training

• Adopt DCN & Nonlocal
& Adaptive RoI pooling

• Cascade RCNN

• Cascade Mask

• Using test tricks

• Using larger model & BN

45.9%

51.7%

Shared FPN Inference Thing



Unified Framework
• FCN-based architecture
• Shared FPN backbone
Stronger Network
• SENet154
• Deformable Conv.
• Nonlocal Conv.
Test-tricks
• Flip
• Multi-Scale testing
• Other tricks

Shared FPN backbone Seg Head for Stuff

Lin, Tsung-Yi, et al. "Feature Pyramid Networks for Object Detection." CVPR. Vol. 1. No. 2. 2017.
Hu J, Shen L, Sun G, et al. Squeeze-and-Excitation Networks[J]. CVPR 2018.

Panoptic Segmentation (Stuff)
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• ResNet50 baseline

Shared FPN Inference Stuff
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• ResNet50 baseline

• Using all test skills

Shared FPN Inference Stuff
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• ResNet50 baseline

• Using all test skills

• Adopt larger model45.9%

61.95%

34.7%

Shared FPN Inference Stuff



Merge method

• Sort thing results with scores

• Thing first, stuff second

• Merge tricks

Kirillov A, He K, Girshick R B, et al. Panoptic Segmentation.[J]. arXiv: Computer Vision and Pattern Recognition, 2018.

Panoptic Segmentation Merge
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Visualize Results



Baseline EnsembleInput

Failure Results



Thanks & questions

For more questions, please contact:
liyanwei2017@ia.ac.cn


