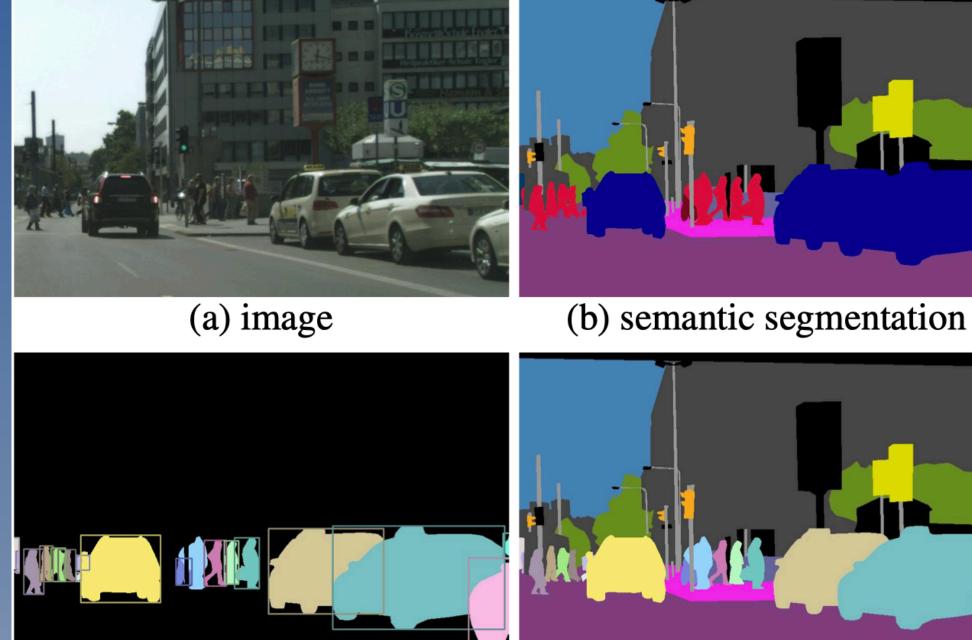
Towards Fully Convolutional Panoptic Segmentation

Yanwei Li CUHK


Contents I. Introduction 2. Panoptic FCN 3. Results & Analysis 4. Future Work

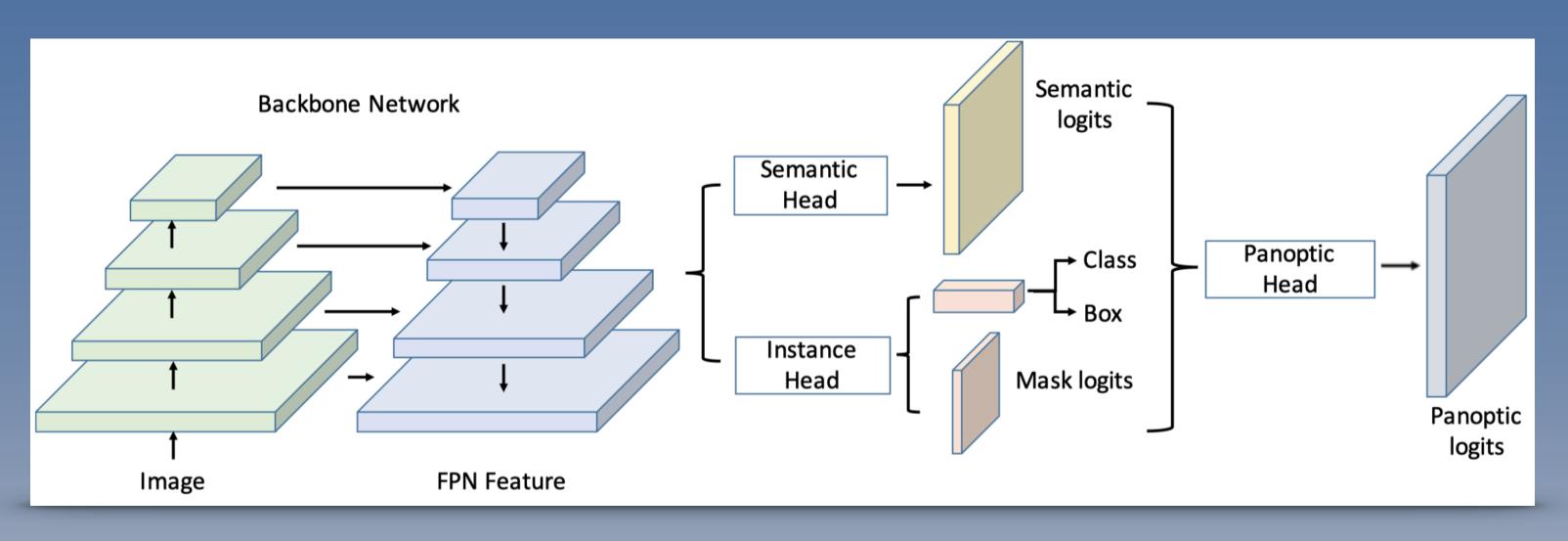
Definition of Panoptic Segmentation Assign each pixel with a semantic label and unique identity to Things and Stuff.

Difficulties in Panoptic Segmentation

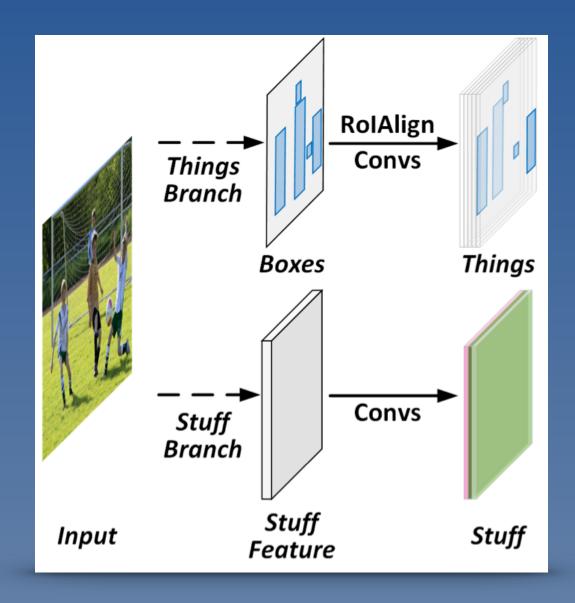
- Conflicting properties of Things and Stuff. Things rely on instance-aware features, while Stuff need semantic-consistent characters.
- How to encode things and stuff in a unified representation?
- How to model the relationship among things, and between things and stuff?

[1] Alexander Kirillov, Kaiming He, Ross Girshick, Carsten Rother, and Piotr Doll'ar. Panoptic segmentation. In CVPR, 2019.

(d) panoptic segmentation

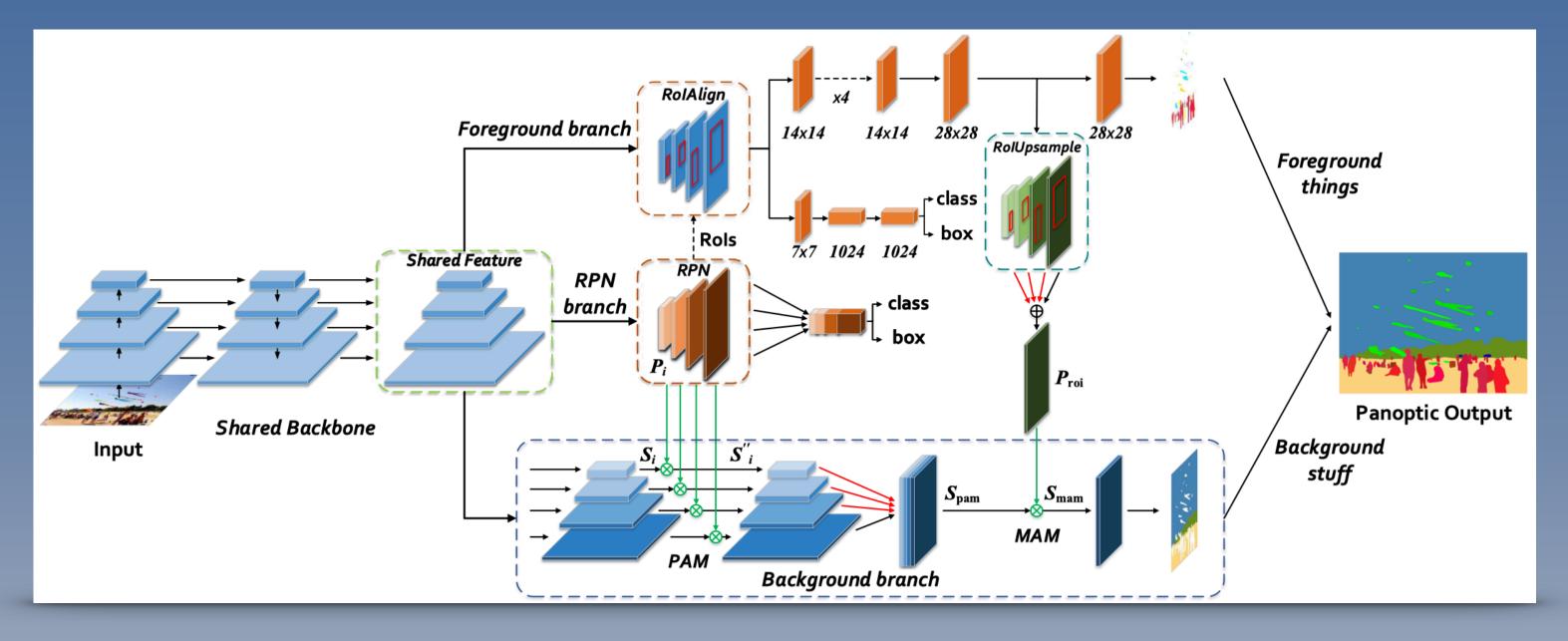

Comparison among tasks. [1]

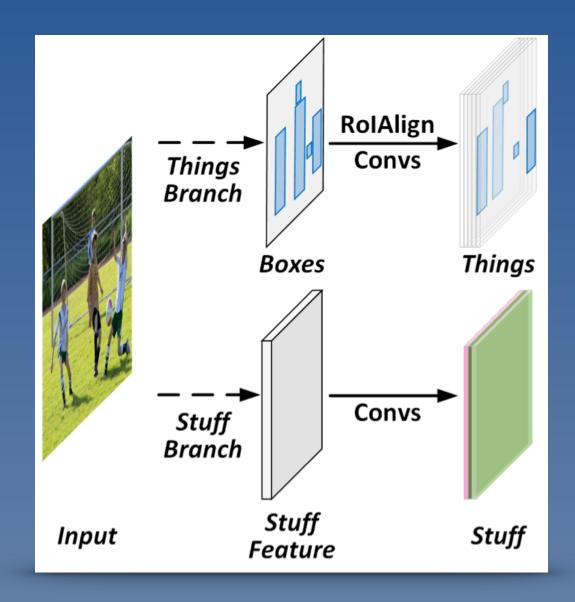
(c) instance segmentation


Previous methods satisfy demands separately

- Instance-awareness for things: box-based [2, 3, 4] or box-free [5, 6] branch.
- Semantic-consistency for stuff: FCN-based branch.

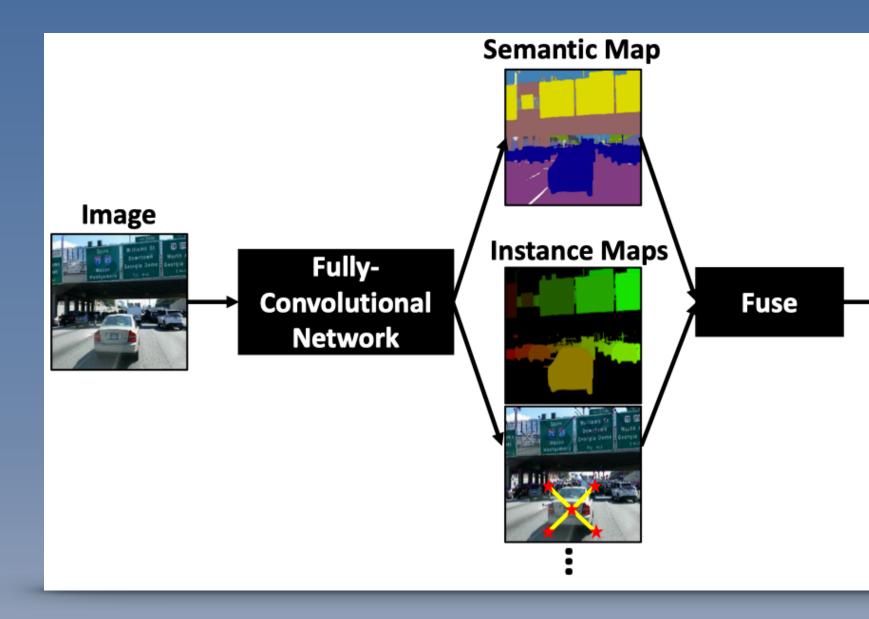
Architecture of UPSNet [3].


[2] Alexander Kirillov, Ross Girshick, Kaiming He, and Piotr Doll'ar. Panoptic feature pyramid networks. In CVPR, 2019. [3] Yuwen Xiong, Renjie Liao, Hengshuang Zhao, Rui Hu, Min Bai, Ersin Yumer, and Raquel Urtasun. Upsnet: A unified panoptic segmentation network. In CVPR, 2019. [4] Yanwei Li, Xinze Chen, Zheng Zhu, Lingxi Xie, Guan Huang, Dalong Du, and Xingang Wang. Attention-guided unified network for panoptic segmentation. In CVPR, 2019.


Previous methods satisfy demands separately

- Instance-awareness for things: box-based [2, 3, 4] or box-free [5, 6] branch.
- Semantic-consistency for stuff: FCN-based branch.

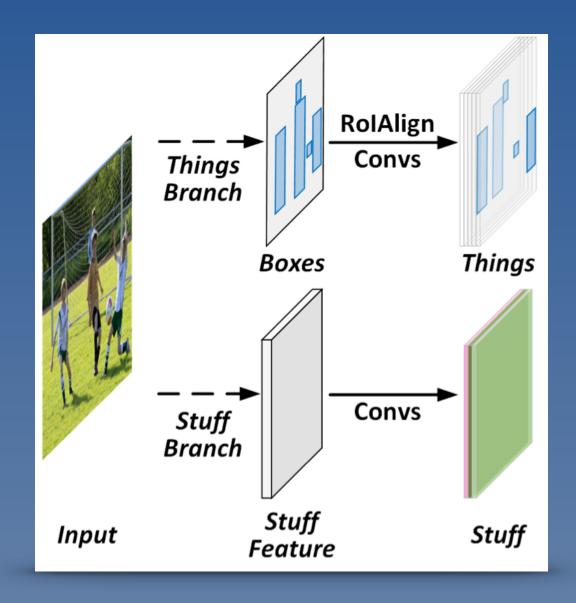
Architecture of AUNet [4].


[2] Alexander Kirillov, Ross Girshick, Kaiming He, and Piotr Doll´ar. Panoptic feature pyramid networks. In CVPR, 2019. [3] Yuwen Xiong, Renjie Liao, Hengshuang Zhao, Rui Hu, Min Bai, Ersin Yumer, and Raquel Urtasun. Upsnet: A unified panoptic segmentation network. In CVPR, 2019. [4] Yanwei Li, Xinze Chen, Zheng Zhu, Lingxi Xie, Guan Huang, Dalong Du, and Xingang Wang. Attention-guided unified network for panoptic segmentation. In CVPR, 2019.

Previous methods satisfy demands separately

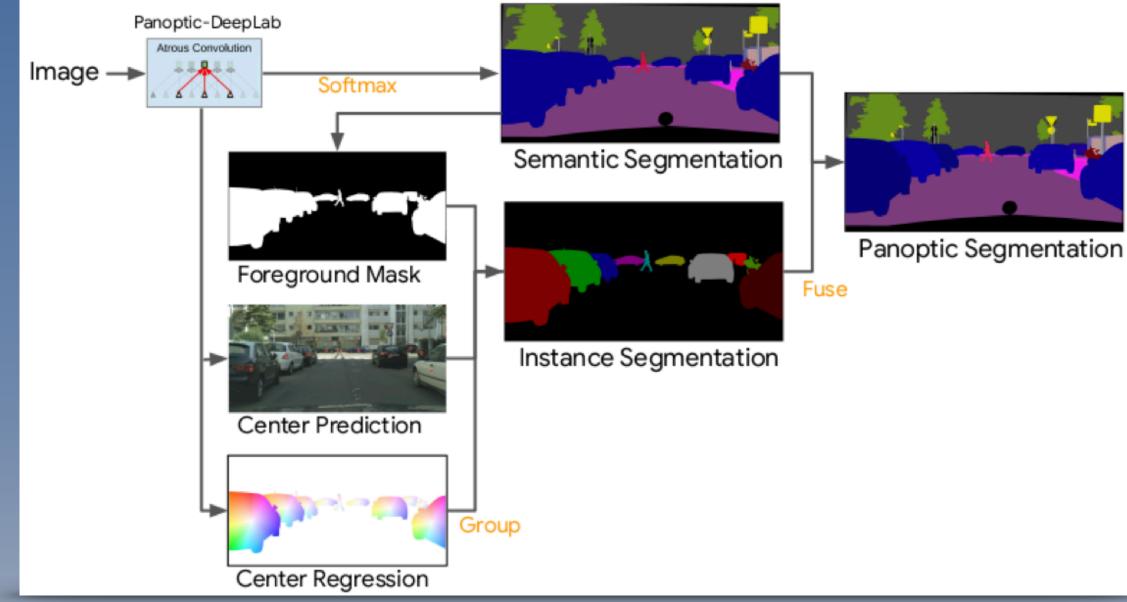
- Instance-awareness for things: box-based [2, 3, 4] or box-free [5, 6] branch.
- Semantic-consistency for stuff: FCN-based branch.



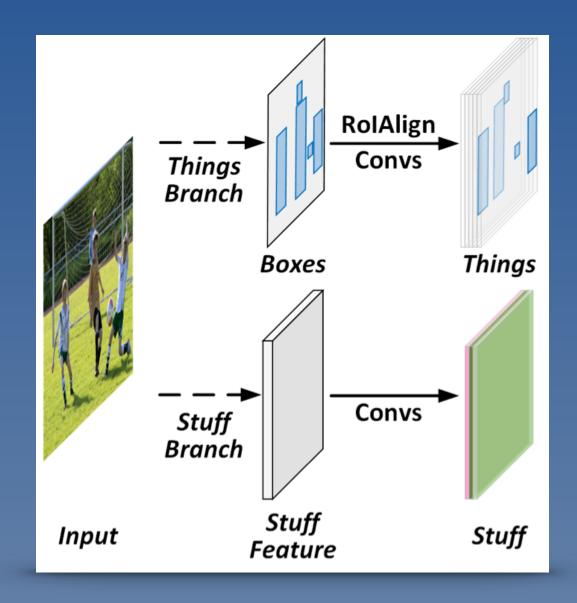

Pipeline of DeeperLab [5]

[5] Tien-Ju Yang, Maxwell D Collins, Yukun Zhu, Jyh-Jing Hwang, Ting Liu, Xiao Zhang, Vivienne Sze, George Papandreou, and Liang-Chieh Chen. Deeperlab: Single-shot image parser. arXiv: 1902.05093, 2019.

[6] Bowen Cheng, Maxwell D Collins, Yukun Zhu, Ting Liu, Thomas S Huang, Hartwig Adam, and Liang-Chieh Chen. Panoptic-deeplab: A simple, strong, and fast baseline for bottom-up panoptic segmentation. In CVPR, 2020.

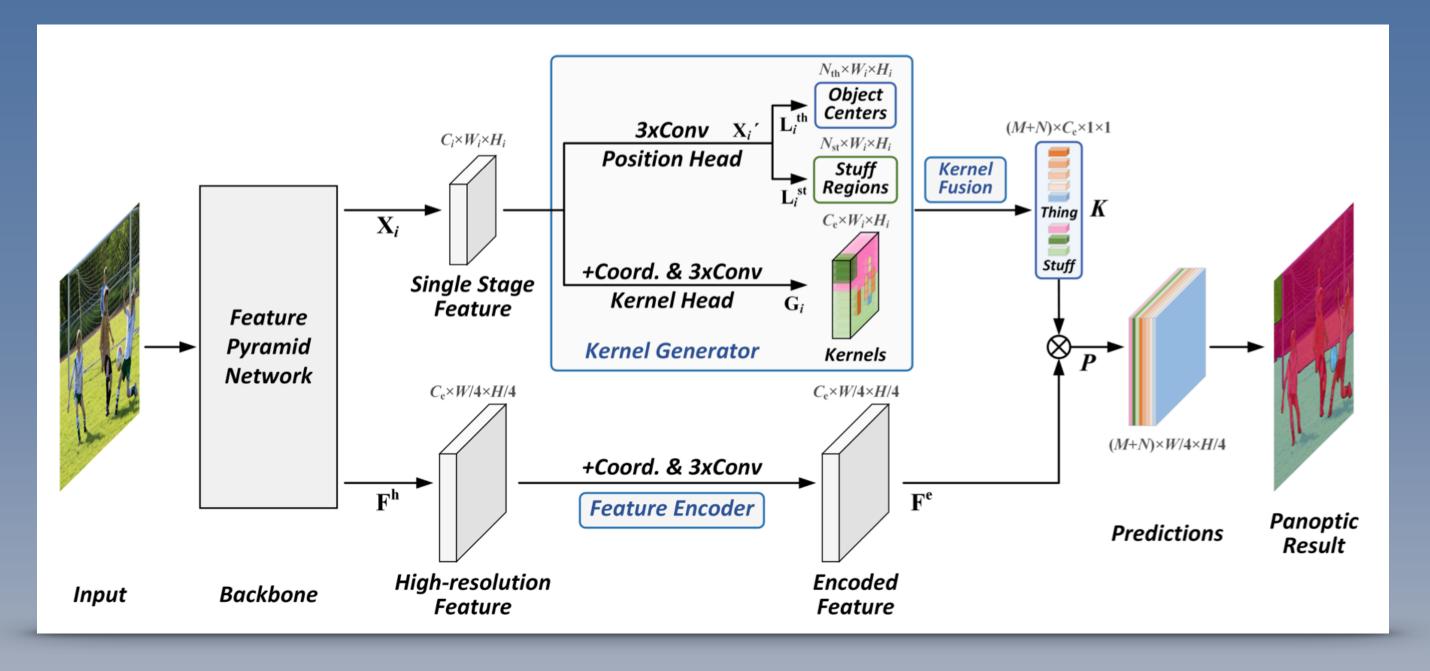


Previous methods satisfy demands separately

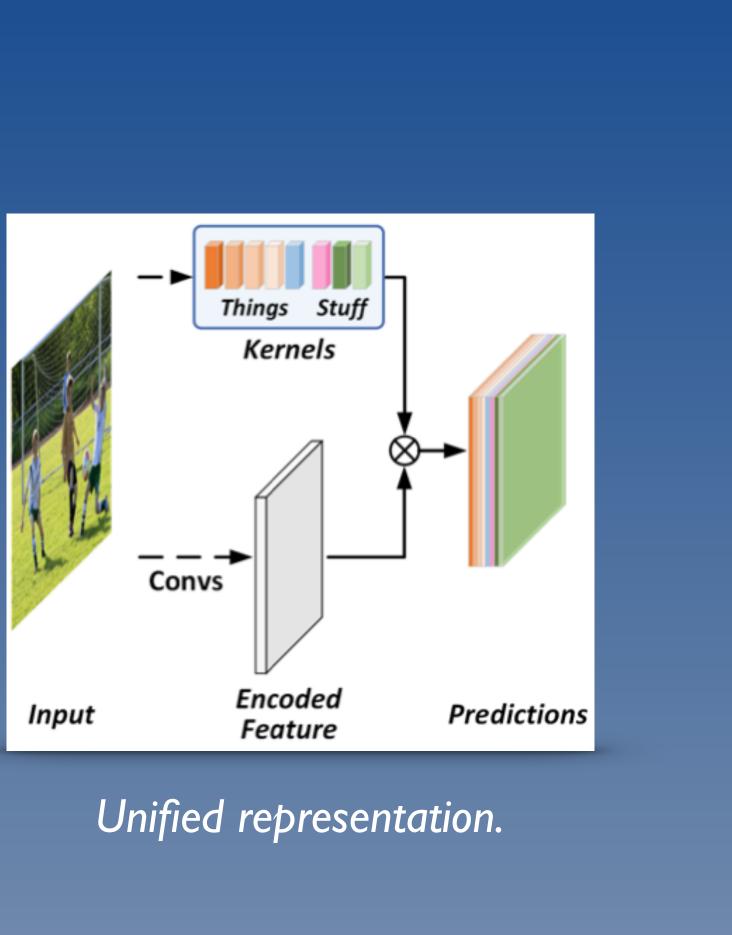

- Instance-awareness for things: box-based [2, 3, 4] or box-free [5, 6] branch.
- Semantic-consistency for stuff: FCN-based branch.

Pipeline of Panoptic-DeepLab [6].

[5] Tien-Ju Yang, Maxwell D Collins, Yukun Zhu, Jyh-Jing Hwang, Ting Liu, Xiao Zhang, Vivienne Sze, George Papandreou, and Liang-Chieh Chen. Deeperlab: Single-shot image parser. arXiv: 1902.05093, 2019.


[6] Bowen Cheng, Maxwell D Collins, Yukun Zhu, Ting Liu, Thomas S Huang, Hartwig Adam, and Liang-Chieh Chen. Panoptic-deeplab: A simple, strong, and fast baseline for bottom-up panoptic segmentation. In CVPR, 2020.

Panoptic FCN

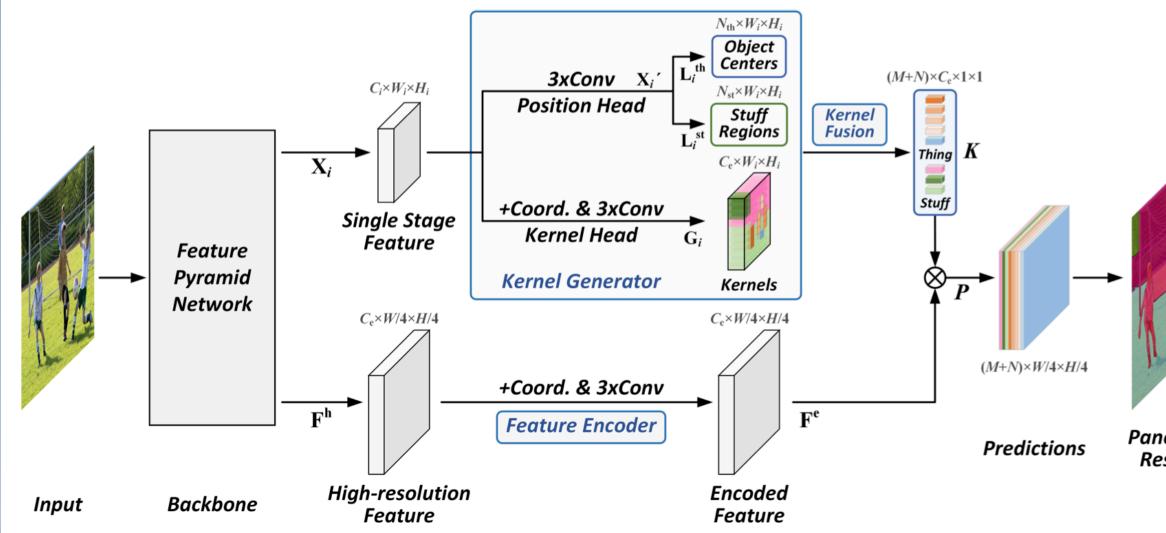

Panoptic FCN represent them uniformly

- It encodes each instance into a specific kernel and generates the prediction by convolutions directly.
- Instance-awareness for things: each thing has unique kernel.
- Semantic-consistency for stuff: identical stuff has same kernel.

Framework of Panoptic FCN [7].

[7] Yanwei Li, Hengshuang Zhao, Xiaojuan Qi, Liwei Wang, Zeming Li, Jian Sun, Jiaya Jia. Fully Convolutional Networks for Panoptic Segmentation. In CVPR, 2021.

Panoptic FCN


Unified loss function in Panoptic FCN
Loss function for position localization

$$\mathcal{L}_{\text{pos}}^{\text{th}} = \sum_{i} \text{FL}(\mathbf{L}_{i}^{\text{th}}, \mathbf{Y}_{i}^{\text{th}})/N_{\text{th}},$$

 $\mathcal{L}_{\text{pos}}^{\text{st}} = \sum_{i} \text{FL}(\mathbf{L}_{i}^{\text{st}}, \mathbf{Y}_{i}^{\text{st}})/W_{i}H_{i},$

• Loss function for segmentation

$$\begin{split} & \text{WDice}(\mathbf{P}_{j}, \mathbf{Y}_{j}^{\text{seg}}) = \sum_{k} w_{k} \text{Dice}(\mathbf{P}_{j,k}, \mathbf{Y}_{j}^{\text{seg}}), \\ & \mathcal{L}_{\text{seg}} = \sum_{j} \text{WDice}(\mathbf{P}_{j}, \mathbf{Y}_{j}^{\text{seg}}) / (M + N), \end{split}$$

[7] Yanwei Li, Hengshuang Zhao, Xiaojuan Qi, Liwei Wang, Zeming Li, Jian Sun, Jiaya Jia. Fully Convolutional Networks for Panoptic Segmentation. In CVPR, 2021.

Framework of Panoptic FCN [7].

Component-wise Analysis in Panoptic FCN Ablation studies on kernel generator and feature encoder.

Table 1. Comparisons among different settings of the kernel generator on the COCO *val* set. *deform* and *conv num* respectively denote deformable convolutions for position head and number of convolutions in both heads of the kernel generator.

deform	conv num	PQ	$PQ^{\rm th}$	$PQ^{\rm st}$	AP	mIoU
×	1	38.4	43.4	31.0	28.3	39.9
×	2	38.9	44.1	31.1	28.9	40.1
×	3	39.2	44.7	31.0	29.6	40.2
×	4	39.2	44.9	30.8	29.4	39.9
✓	3	39.9	45.0	32.4	29.9	41.2

Table 2. Comparisons among different positional settings on the COCO *val* set. *coord*_w and *coord*_f denote combining coordinates for the kernel head, and feature encoder, respectively.

$coord_{\rm w}$	$\mathit{coord}_{\mathrm{f}}$	PQ	$PQ^{\rm th}$	$PQ^{\rm st}$	AP	mIoU
×	×	39.9	45.0	32.4	29.9	41.2
~	X	39.9	45.0	32.2	30.0	41.1
×	\checkmark	40.2	45.3	32.5	30.4	41.6
✓	✓	41.3	46.9	32.9	32.1	41.7

Table 3. Comparisons among different similarity thresholds of kernel fusion on the COCO *val* set. *class-aware* denotes only merging kernel weights with the same predicted class *c*. And *thres* indicates the cosine similarity threshold *thres* for kernel fusion in Sec. 3.2.

class-aware	thres	PQ	$PQ^{\rm th}$	$PQ^{\rm st}$	AP	mIoU
✓	0.80	39.7	44.3	32.9	29.9	41.7
\checkmark	0.85	40.8	46.1	32.9	31.5	41.7
\checkmark	0.90	41.3	46.9	32.9	32.1	41.7
\checkmark	0.95	41.3	47.0	32.9	31.1	41.7
×	0.90	41.2	46.7	32.9	30.9	41.7

Table 4. Comparisons among different channel numbers of the feature encoder on the COCO *val* set. *channel num* represents the channel number $C_{\rm e}$ of the feature encoder.

channel num	PQ	$PQ^{\rm th}$	$PQ^{\rm st}$	AP	mIoU
16	39.9	45.0	32.1	30.8	41.3
32	40.8	46.3	32.5	31.7	41.6
64	41.3	46.9	32.9	32.1	41.7
128	41.3	47.0	32.6	32.6	41.7

Component-wise Analysis in Panoptic FCN Ablation studies on loss function and feature encoder.

Table 5. Comparisons among different feature types for the feature encoder on the COCO *val* set. *feature type* denotes the method to gernerate high-resolution feature \mathbf{F}^{h} in Sec. 3.3.

feature type	PQ	$PQ^{\rm th}$	$PQ^{\rm st}$	AP	mIoU
FPN-P2	40.6	46.0	32.4	31.6	41.3
FPN-Summed	40.5	46.0	32.1	31.7	41.1
Semantic FPN [17]	41.3	46.9	32.9	32.1	41.7

Table 6. Comparisons among different settings of weighted dice loss on the COCO val set. weighted and k denote weighted dice loss and the number of sampled points in Sec. 3.4, respectively.

weighted	k	PQ	$PQ^{\rm th}$	$PQ^{\rm st}$	AP	mIoU
×	-	40.2	45.5	32.4	31.0	41.3
✓	1	40.0	45.1	32.4	30.9	41.4
\checkmark	3	41.0	46.4	32.7	31.6	41.4
\checkmark	5	41.0	46.5	32.9	32.1	41.7
\checkmark	7	41.3	46.9	32.9	32.1	41.7
~	9	41.3	46.8	32.9	32.1	41.8

Table 7. Comparisons among different training schedules on the COCO val set. $1 \times, 2 \times$, and $3 \times$ schedule denote the 90K, 180K, and 270K training iterations in Detectron2 [47], respectively.

schedule	PQ	$PQ^{\rm th}$	$PQ^{\rm st}$	AP	mIoU
$1 \times$	41.3	46.9	32.9	32.1	41.7
2 imes	43.2	48.8	34.7	34.3	43.4
3 imes	43.6	49.3	35.0	34.5	43.8

Table 8. Comparisons among different settings of the feature encoder on the COCO val set. *deform* and *channel num* represent deformable convolutions and the channel number $C_{\rm e}$, respectively.

deform	channel num	PQ	$PQ^{\rm th}$	$PQ^{\rm st}$	AP	mIoU
×	64	43.6	49.3	35.0	34.5	43.8
1	256	44.3	50.0	35.6	35.5	44.0

Component-wise Analysis in Panoptic FCN Ablation studies on loss function and speed-accuracy.

> Table 9. Upper-bound analysis on the COCO val set. gt position and gt class denote utilizing the ground-truth position G_i and class C_i in each position head for kernel generation, respectively.

_	gt position	gt class	PQ	$PQ^{\rm th}$	$PQ^{\rm st}$	AP	mIoU
-	X	×	43.6	49.3	35.0	34.5	43.8
	1	×	49.8	52.2	46.1	38.2	54.6
	1	1	65.9	64.1	68.7	45.5	86.6
			+22.3	+14.8	+33.7	+11.0	+42.8
-							

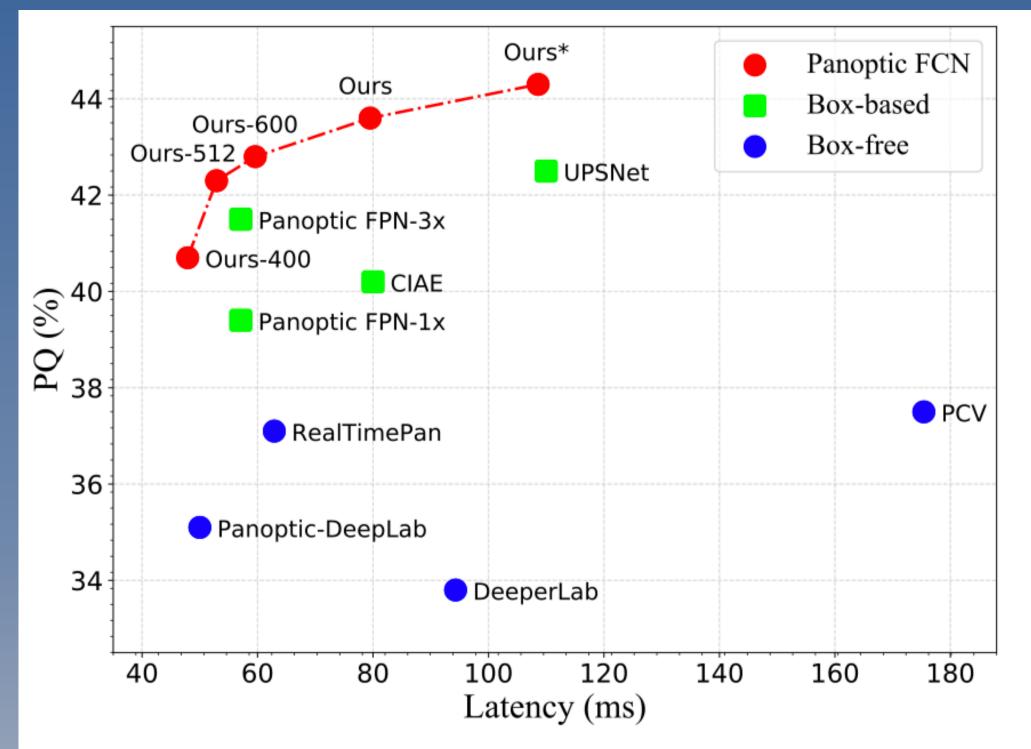


Figure 3. Speed-Accuracy trade-off curve on the COCO val set. All the results are compared with Res50 except DeeperLab [49] based on Xception-71 [7]. The latency is measured end-to-end from single input to panoptic result. Details are given in Table 10.

Results of Panoptic FCN It surpasses previous box-based and box-free methods with efficiency.

Table 10. Comparisons with previous methods on the COCO *val* set. Panoptic FCN-400, 512, and 600 denotes utilizing smaller input instead of the default setting. All of our results are achieved on the same device with single input and no flipping. FPS is measured *end-to-end* from single input to panoptic result with an average speed over 1,000 images, which could be further improved with more optimizations. The simple enhanced version is marked with *. The model testing by ourselves according to released codes is denoted as †.

Method	Backbone	PQ	SQ	RQ	$PQ^{\rm th}$	$SQ^{\rm th}$	$RQ^{\rm th}$	$PQ^{\rm st}$	$SQ^{\rm st}$	$RQ^{\rm st}$	Device	FPS
				box	x-based							
Panoptic FPN [17]	Res50-FPN	39.0	-	-	45.9	-	-	28.7	-	-	-	-
Panoptic FPN ^{\dagger} -1×	Res50-FPN	39.4	77.8	48.3	45.9	80.9	55.3	29.6	73.3	37.7	V100	17.5
Panoptic FPN ^{\dagger} -3×	Res50-FPN	41.5	79.1	50.5	48.3	82.2	57.9	31.2	74.4	39.5	V100	17.5
AUNet [24]	Res50-FPN	39.6	-	-	49.1	-	-	25.2	-	-	-	
CIAE [11]	Res50-FPN	40.2	-	-	45.3	-	-	32.3	-	-	2080Ti	12.5
UPSNet [†] [48]	Res50-FPN	42.5	78.0	52.5	48.6	79.4	59.6	33.4	75.9	41.7	V100	9.1
Unifying [23]	Res50-FPN	43.4	79.6	53.0	48.6	-	-	35.5	-	-	-	-
				ba	ox-free							
DeeperLab [49]	Xception-71	33.8	-	-	-	-	-	-	-	-	V100	10.6
Panoptic-DeepLab [6]	Res50	35.1	-	-	-	-	-	-	-	-	V100	20.0
AdaptIS [40]	Res50	35.9	-	-	40.3	-	-	29.3	-	-	-	-
RealTimePan [14]	Res50-FPN	37.1	-	-	41.0	-	-	31.3	-	-	V100	15.9
PCV [42]	Res50-FPN	37.5	77.7	47.2	40.0	78.4	50.0	33.7	76.5	42.9	1080Ti	5.7
SOLO V2 [45]	Res50-FPN	42.1	-	-	49.6	-	-	30.7	-	-	-	-
Panoptic FCN-400	Res50-FPN	40.7	80.5	49.3	44.9	82.0	54.0	34.3	78.1	42.1	V100	20.9
Panoptic FCN-512	Res50-FPN	42.3	80.9	51.2	47.4	82.1	56.9	34.7	79.1	42.7	V100	18.9
Panoptic FCN-600	Res50-FPN	42.8	80.6	51.6	47.9	82.6	57.2	35.1	77.4	43.1	V100	16.8
Panoptic FCN	Res50-FPN	43.6	80.6	52.6	49.3	82.6	58.9	35.0	77.6	42.9	V100	12.5
Panoptic FCN*	Res50-FPN	44.3	80.7	53.0	50.0	83.4	59.3	35.6	76.7	43.5	V100	9.2

Results of Panoptic FCN It surpasses previous box-based and box-free methods with efficiency.

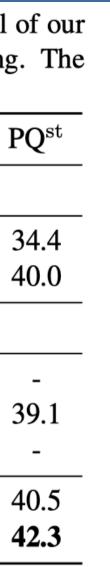
Table 11. Experiments on the COCO *test-dev* set. All of our results are achieved with single scale input and no flipping. The simple enhanced version and *val* set for training are marked with * and ‡.

Method	Backbone	PQ	$PQ^{\rm th}$	$PQ^{\rm st}$			
	box-based						
Panoptic FPN [17]	Res101-FPN	40.9	48.3	29.7			
CIAE [11]	DCN101-FPN	44.5	49.7	36.8			
AUNet [24]	ResNeXt152-FPN	46.5	55.8	32.5			
UPSNet [48]	DCN101-FPN	46.6	53.2	36.7			
Unifying [‡] [23]	DCN101-FPN	47.2	53.5	37.7			
box-free							
DeeperLab [49]	Xception-71	34.3	37.5	29.6			
SSAP [10]	Res101-FPN	36.9	40.1	32.0			
PCV [42]	Res50-FPN	37.7	40.7	33.1			
Panoptic-DeepLab [6]	Xception-71	39.7	43.9	33.2			
AdaptIS [40]	ResNeXt-101	42.8	53.2	36.7			
Axial-DeepLab [43]	Axial-ResNet-L	43.6	48.9	35.6			
Panoptic FCN	Res101-FPN	45.5	51.4	36.4			
Panoptic FCN	DCN101-FPN	47.0	53.0	37.8			
Panoptic FCN*	DCN101-FPN	47.1	53.2	37.8			
Panoptic FCN* [‡]	DCN101-FPN	47.5	53.7	38.2			

Table 12. Experiments on the Cityscape *val* set. All of our results are achieved with single scale input and no flipping. The simple enhanced version is marked with *.

Panoptic FPN [17] AUNet [24] UPSNet [48] Seamless [36] Unifying [23]

Method


PCV [42] DeeperLab [49] SSAP [10] AdaptIS [40] Panoptic-DeepLab [6]

Panoptic FCN Panoptic FCN*

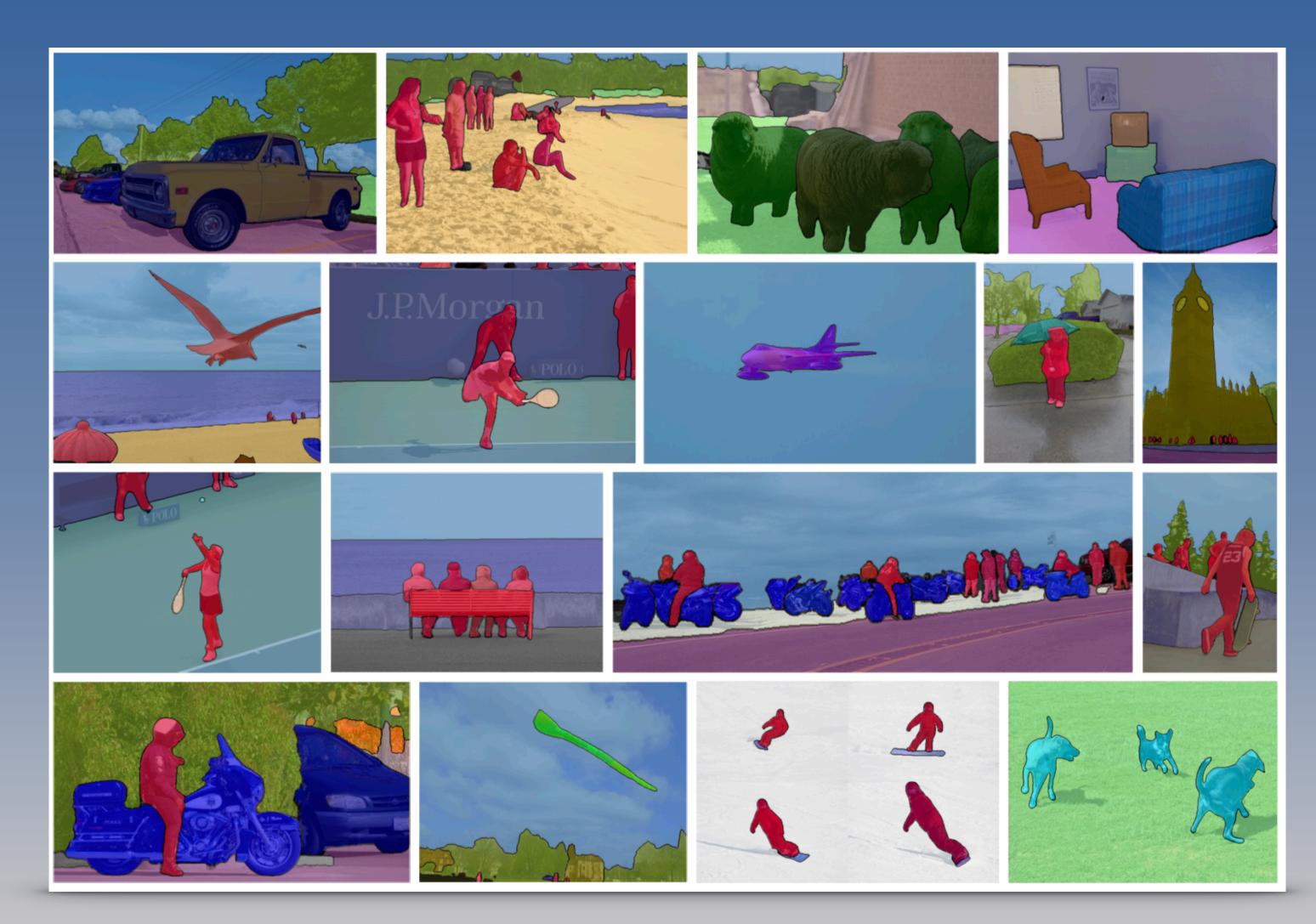
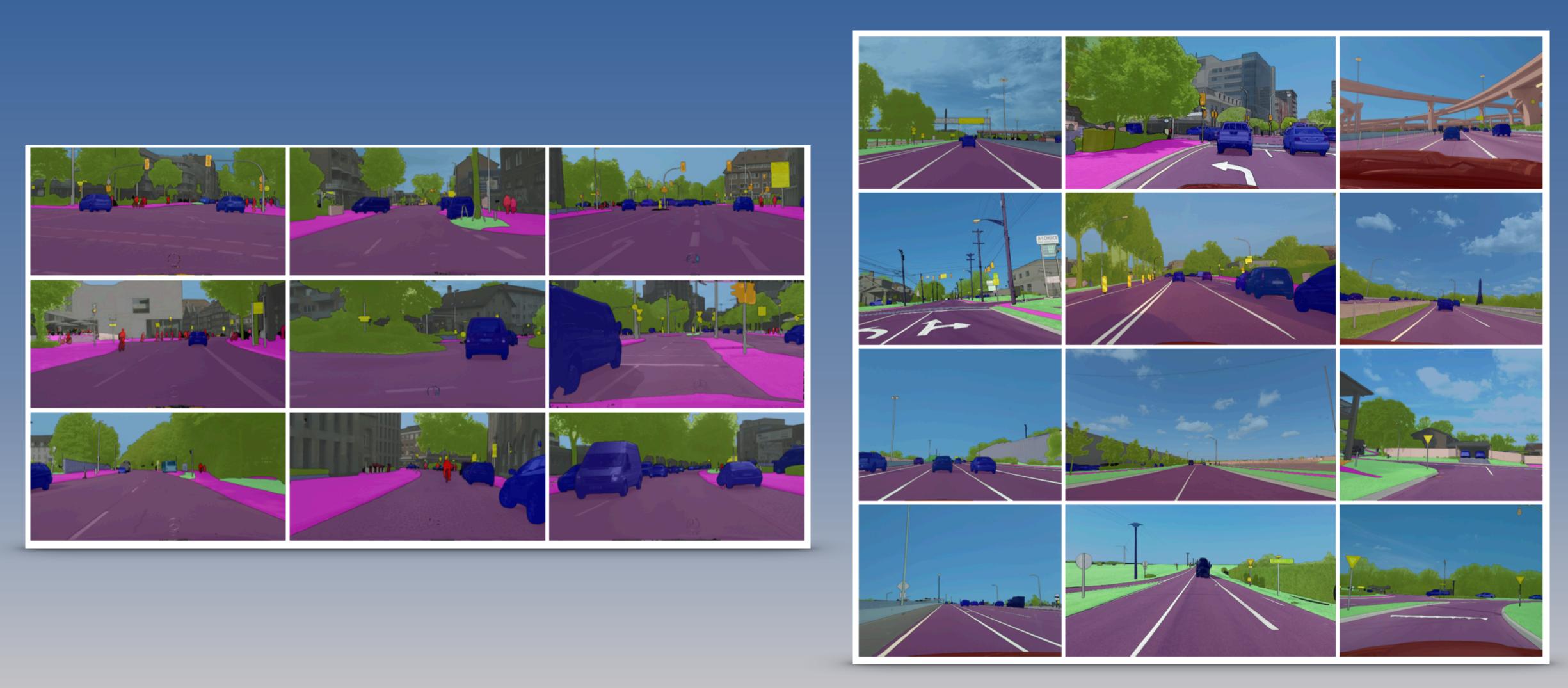

ca with .			
Backbone	PQ	$PQ^{\rm th}$	$PQ^{\rm st}$
box-based			
Res101-FPN	58.1	52.0	62.5
Res101-FPN	59.0	54.8	62.1
Res50-FPN	59.3	54.6	62.7
Res50-FPN	60.2	55.6	63.6
Res50-FPN	61.4	54.7	66.3
box-free			
Res50-FPN	54.2	47.8	58.9
Xception-71	56.5	-	-
Res50-FPN	58.4	50.6	-
Res50	59.0	55.8	61.3
Res50	59.7	-	-
Res50-FPN	59.6	52.1	65.1
Res50-FPN	61.4	54.8	66.6

Table 13. Experiments on the Mapillary Vistas *val* set. All of our results are achieved with single scale input and no flipping. The simple enhanced version is marked with *.


Method	Backbone	PQ	$PQ^{\rm th}$
	box-based		
TASCNet [21]	Res50-FPN	32.6	31.1
Seamless [36]	Res50-FPN	36.2	33.6
	box-free		
DeeperLab [49]	Xception-71	32.0	-
AdaptIS [40]	Res50	32.0	26.6
Panoptic-DeepLab [6]	Res50	33.3	-
Panoptic FCN	Res50-FPN	34.8	30.6
Panoptic FCN*	Res50-FPN	36.9	32.9

Visualization of Panoptic FCN It achieve fine results on common context and traffic-related scenarios.

Visualization of Panoptic FCN It achieve fine results on common context and traffic-related scenarios.

Future Work

More unified localization branch For example, utilize center to represent Things and Stuff simultaneously.

Simplified panoptic generation Currently, using argmax for panoptic generation brings 1.4% PQ drop.

More sparse kernel generation More sparse kernel representation is needed to drop kernel generation.

https://github.com/yanwei-li/PanopticFCN ywli@cse.cuhk.edu.hk

Thanks

Yanwei Li CUHK