



# 动态网络及其在场景分割中的应用

Yanwei LI



## 分享提纲





### 1. 动态网络简介

- 什么是动态网络?
- 为什么需要动态网络?
- 和其他任务的区别?

### 4. 未来展望

- 还有哪些不足?
- 可以从哪方面改进?



### 2. 相关领域研究进展

- 动态网络研究进展
- 场景分割研究进展

### 3. 动态网络与场景分割

- 用于场景分割的动态网络
- 相关实验及可视化



- 1 动态网络简介
- 2 相关领域研究进展
- 3 动态网络与场景分割
- 4 未来展望





### 冒 动态网络是什么?

这里的动态 (dynamic) 是相对于传统的固定结构而言,指**网络结构或部件 (如卷积参数) 根据输入数据自适应地进行调整**,以实现datadependent的前向推断过程。

### 台 为什么需要动态网络?

• 更适合: 使网络适应输入图像不同的分布

• 更精确: 根据输入调节以获得更好的性能

• 更高效: 自适应地省去不必要的计算





### 唱 动态网络是什么?

这里的动态 (dynamic) 是相对于传统的固定结构而言,指**网络结构或部件 (如卷积参数) 根据输入数据自适应地进行调整**,以实现datadependent的前向推断过程。

### 品 和其他任务的区别?

• 手工设计: 根据经验设计出更优的固定连接

• 结构搜索: 自动搜索出给定空间中最优的连接

• 动态网络: 根据输入自适应地调整网络连接

### 台 为什么需要动态网络?

• 更适合: 使网络适应输入图像不同的分布

• 更精确: 根据输入调节以获得更好的性能

• 更高效: 自适应地省去不必要的计算





### 唱 动态网络是什么?

这里的动态 (dynamic) 是相对于传统的固定结构而言,指网络结构或部件 (如卷积参数) 根据输入数据自适应地进行调整,以实现datadependent的前向推断过程。

### 品 和其他任务的区别?

• 手工设计: 根据经验设计出更优的固定连接

• 结构搜索: 自动搜索出给定空间中最优的连接

• 动态网络: 根据输入自适应地调整网络连接

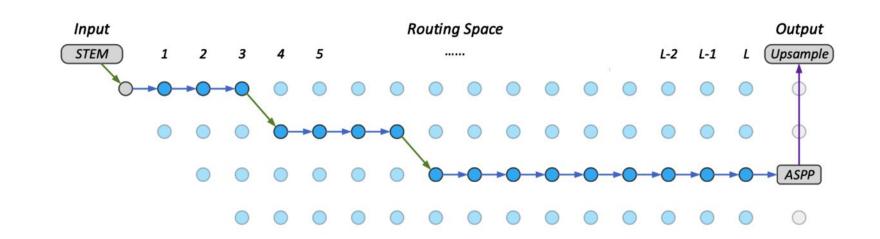
### 台 为什么需要动态网络?

• 更适合: 使网络适应输入图像不同的分布

• 更精确: 根据输入调节以获得更好的性能

• 更高效: 自适应地省去不必要的计算

DeepLab V3







### 唱 动态网络是什么?

这里的动态 (dynamic) 是相对于传统的固定结构而言,指网络结构或部件 (如卷积参数) 根据输入数据自适应地进行调整,以实现datadependent的前向推断过程。

## 岛 和其他任务的区别?

• 手工设计: 根据经验设计出更优的固定连接

• 结构搜索: 自动搜索出给定空间中最优的连接

• 动态网络: 根据输入自适应地调整网络连接

### 台 为什么需要动态网络?

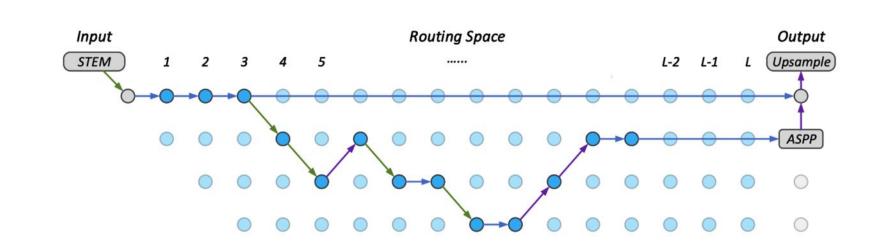
DeepLab V3

Auto-DeepLab

• 更适合: 使网络适应输入图像不同的分布

• 更精确: 根据输入调节以获得更好的性能

• 更高效: 自适应地省去不必要的计算



Rethinking atrous convolution for semantic image segmentation. *arXiv:1706.05587*, 2017. Autodeeplab: Hierarchical neural architecture search for semantic image segmentation. In *CVPR*, 2019.





### 唱 动态网络是什么?

这里的动态 (dynamic) 是相对于传统的固定结构而言,指网络结构或部件 (如卷积参数) 根据输入数据自适应地进行调整,以实现datadependent的前向推断过程。

## 岛 和其他任务的区别?

• 手工设计: 根据经验设计出更优的固定连接

• 结构搜索: 自动搜索出给定空间中最优的连接

• 动态网络: 根据输入自适应地调整网络连接

为什么需要动态网络?

• 更适合: 使网络适应输入图像不同的分布

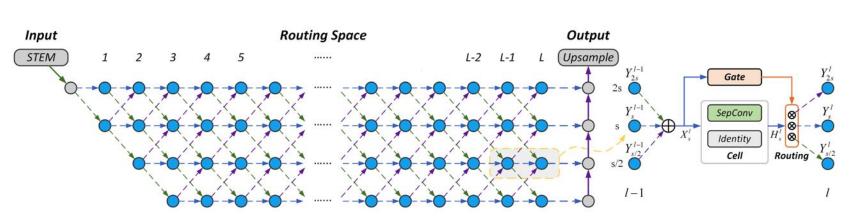
• 更精确: 根据输入调节以获得更好的性能

• 更高效: 自适应地省去不必要的计算





Dynamic Routing







### 动态网络是什么?

这里的动态 (dynamic) 是相对于传统的固定结 构而言,指网络结构或部件(如卷积参数)根 据输入数据自适应地进行调整,以实现datadependent的前向推断过程。

### 和其他任务的区别?

手工设计: 根据经验设计出更优的固定连接

结构搜索:自动搜索出给定空间中最优的连接

动态网络: 根据输入自适应地调整网络连接

## 为什么需要动态网络?

DeepLab V3

Auto-DeepLab

更适合: 使网络适应输入图像不同的分布

更精确: 根据输入调节以获得更好的性能

更高效: 自适应地省去不必要的计算



Rethinking atrous convolution for semantic image segmentation. arXiv:1706.05587, 2017. Autodeeplab: Hierarchical neural architecture search for semantic image segmentation. In CVPR, 2019. Learning Dynamic Routing for Semantic Segmentation. In CVPR, 2020.



- 1 动态网络简介
- 2 相关领域研究进展
- 3 动态网络与场景分割
- 4 未来展望





### **鲫** 动态网络研究进展

#### 部分代表性工作:

Multi-Scale Dense Network

ICLR 2018
Classfication

SkipNet

ECCV 2018
Classfication

Resolution Adaptive Networks

CVPR 2020 Classification

**Learning Dynamic Routing** 

**CVPR 2020** 

Segmentation

Deciding How to Decide

ICLR 2017
Classfication

**HydraNets** 

CVPR 2018
Classfication

CondConv (Soft Conditional Computation)

NeurlPS 2019

**Classfication Detection** 

**Dynamic Convolution** 

**CVPR 2020** 

**Classfication Key Points** 





#### **Multi-Scale Dense Networks**

Published as a conference paper at ICLR 2018

## MULTI-SCALE DENSE NETWORKS FOR RESOURCE EFFICIENT IMAGE CLASSIFICATION

Gao Huang
Cornell University

**Danlu Chen** Fudan University

Tianhong Li
Tsinghua University

Felix Wu
Cornell University

Laurens van der Maaten Facebook AI Research Kilian Weinberger Cornell University

#### **Motivation:**

应使用不同的计算资源来分别相应的图像,对于简单的图像应该使用更少的计算资源从而减少平均计算消耗。





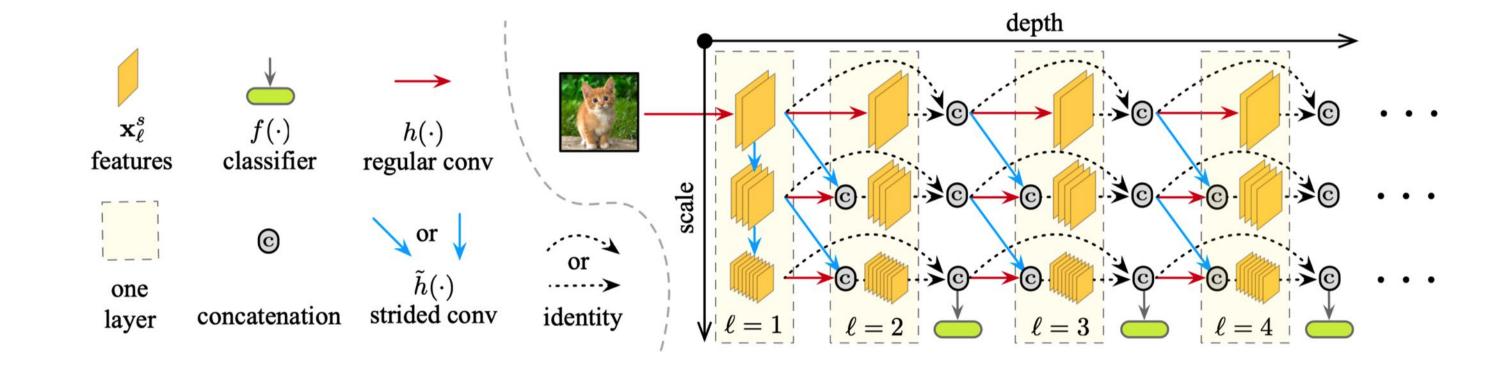


Figure 2: Illustration of the first four layers of an MSDNet with three scales. The horizontal direction corresponds to the layer direction (depth) of the network. The vertical direction corresponds to the scale of the feature maps. Horizontal arrows indicate a regular convolution operation, whereas diagonal and vertical arrows indicate a strided convolution operation. Classifiers only operate on feature maps at the coarsest scale. Connections across more than one layer are not drawn explicitly: they are implicit through recursive concatenations.

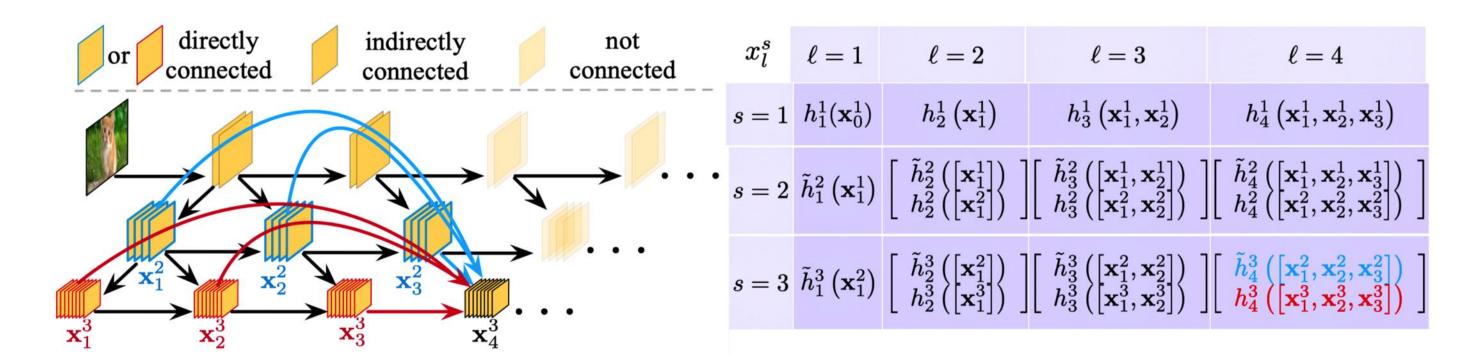


Figure 4: The output  $\mathbf{x}_{\ell}^s$  of layer  $\ell$  at the  $s^{\text{th}}$  scale in a MSDNet. Herein,  $[\dots]$  denotes the concatenation operator,  $h_{\ell}^s(\cdot)$  a regular convolution transformation, and  $\tilde{h}_{\ell}^s(\cdot)$  a strided convolutional. Note that the outputs of  $h_{\ell}^s$  and  $\tilde{h}_{\ell}^s$  have the same feature map size; their outputs are concatenated along the channel dimension.





### **Multi-Scale Dense Networks**

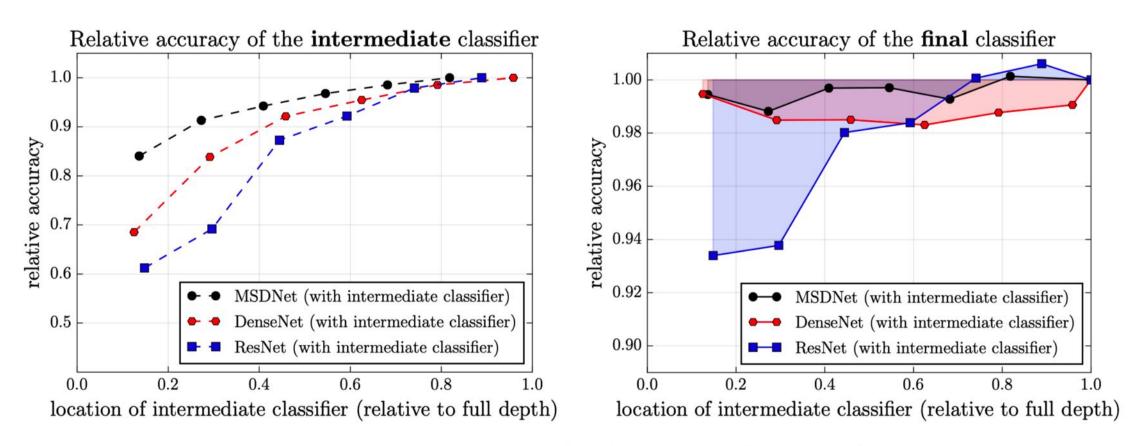


Figure 3: Relative accuracy of the intermediate classifier (*left*) and the final classifier (*right*) when introducing a single intermediate classifier at different layers in a ResNet, DenseNet and MSDNet. All experiments were performed on the CIFAR-100 dataset. Higher is better.

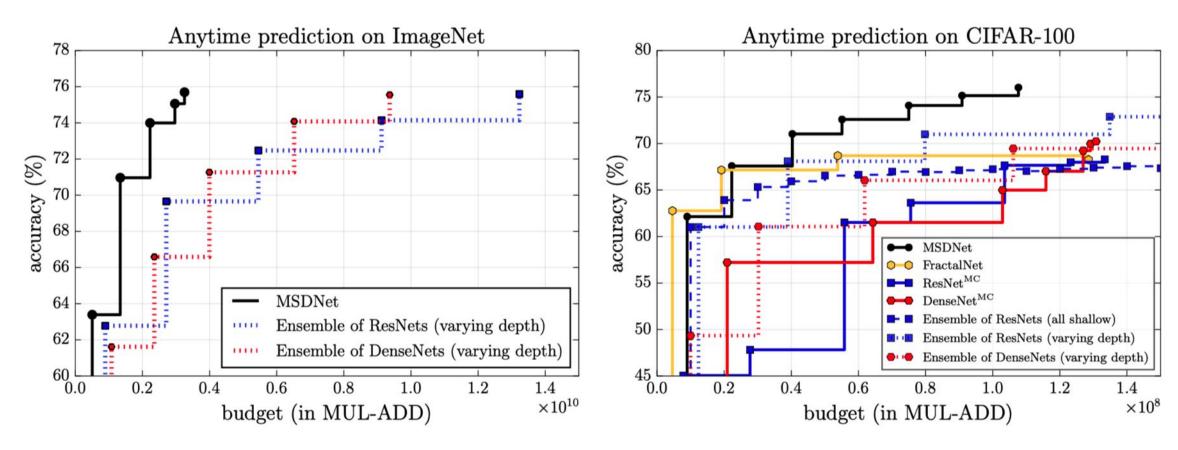


Figure 5: Accuracy (top-1) of anytime prediction models as a function of computational budget on the ImageNet (left) and CIFAR-100 (right) datasets. Higher is better.

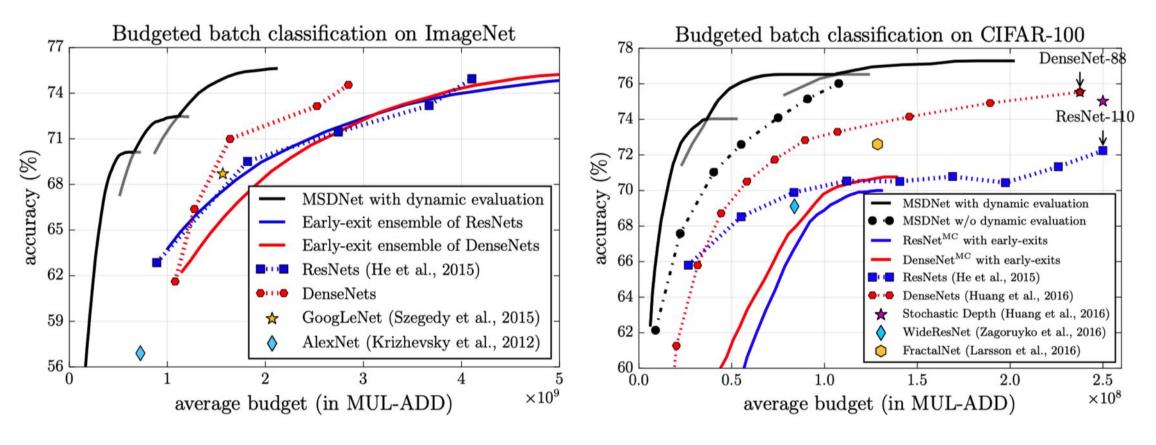


Figure 7: Accuracy (top-1) of *budgeted batch classification* models as a function of average computational budget per image the on ImageNet (left) and CIFAR-100 (right) datasets. Higher is better.





(a) Red wine

(b) Volcano





### CondConv

## CondConv: Conditionally Parameterized Convolutions for Efficient Inference

Brandon Yang\*
Google Brain
bcyang@google.com

Quoc V. Le Google Brain qvl@google.com **Gabriel Bender** 

Google Brain gbender@google.com

Jiquan Ngiam
Google Brain
jngiam@google.com

#### **Motivation:**

针对不同的图片输入学习使用不同的卷积核,从而提升网络的容量和性能。使用参数量的增加来提升网络容量,但计算量保持不变。

$$Output(x) = \sigma((\alpha_1 \cdot W_1 + \ldots + \alpha_n \cdot W_n) * x)$$

r(x) = Sigmoid(GlobalAveragePool(x) R)

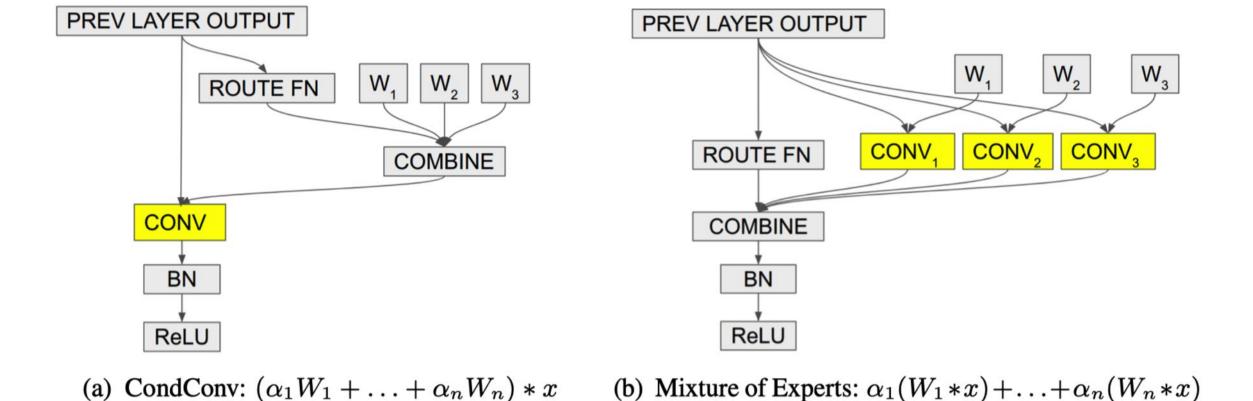


Figure 1: (a) Our CondConv layer architecture with n=3 kernels vs. (b) a mixture of experts approach. By parameterizing the convolutional kernel conditionally on the input, CondConv is mathematically equivalent to the mixture of experts approach, but requires only 1 convolution.

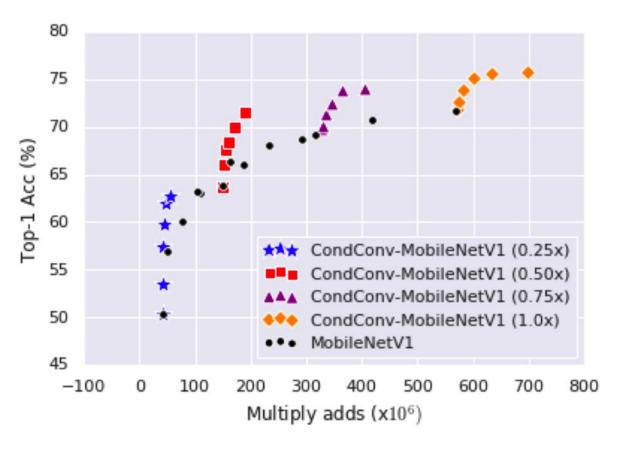


Figure 2: On ImageNet validation, increasing the number of experts per layer of our CondConv-MobileNetV1 models improves performance relative to inference cost compared to the MobileNetV1 frontier [38] across a spectrum of model sizes. Models with more experts per layer achieve monotonically higher accuracy. We train CondConv models with {1, 2, 4, 8, 16, 32} experts at width multipliers {0.25, 0.50, 0.75, 1.0}.







Table 1: ImageNet validation accuracy and inference cost for our CondConv models on several baseline model architectures. All models use 8 experts per CondConv layer. CondConv improves the accuracy of all baseline architectures with small relative increase in inference cost (<10%).

|                    | Base                    | line <sup>2</sup> | CondCo                  | CondConv  |  |  |
|--------------------|-------------------------|-------------------|-------------------------|-----------|--|--|
|                    | MADDs ( $\times 10^6$ ) | Top-1 (%)         | MADDs ( $\times 10^6$ ) | Top-1 (%) |  |  |
| MobileNetV1 (1.0x) | 567                     | 71.9              | 600                     | 73.7      |  |  |
| MobileNetV2 (1.0x) | 301                     | 71.6              | 329                     | 74.6      |  |  |
| MnasNet-A1         | 312                     | 74.9              | 325                     | 76.2      |  |  |
| ResNet-50          | 4093                    | 77.7              | 4213                    | 78.6      |  |  |
| EfficientNet-B0    | 391                     | 77.2              | 413                     | 78.3      |  |  |

Table 2: COCO object detection minival performance of our CondConv-MobileNetV1 SSD 300 architecture with 8 experts per layer. Mean average precision (mAP) reported with COCO primary challenge metric (AP at IoU=0.50:0.05:0.95). CondConv improves mAP at all model sizes with small relative increase in inference cost (<5%).

|                      | Baseline <sup>3</sup> MADDs ( $\times 10^6$ ) mAP |       | CondConv<br>MADDs (×10 <sup>6</sup> ) | mAP   |
|----------------------|---------------------------------------------------|-------|---------------------------------------|-------|
|                      | MADDS (X10)                                       | IIIAP | MADDS (X10 )                          | IIIAP |
| MobileNetV1 (0.5x)   | 352                                               | 14.4  | 363                                   | 18.0  |
| MobileNetV1 (0.75x)  | 730                                               | 18.2  | 755                                   | 21.0  |
| MobileNetV1 $(1.0x)$ | 1230                                              | 20.3  | 1280                                  | 22.4  |

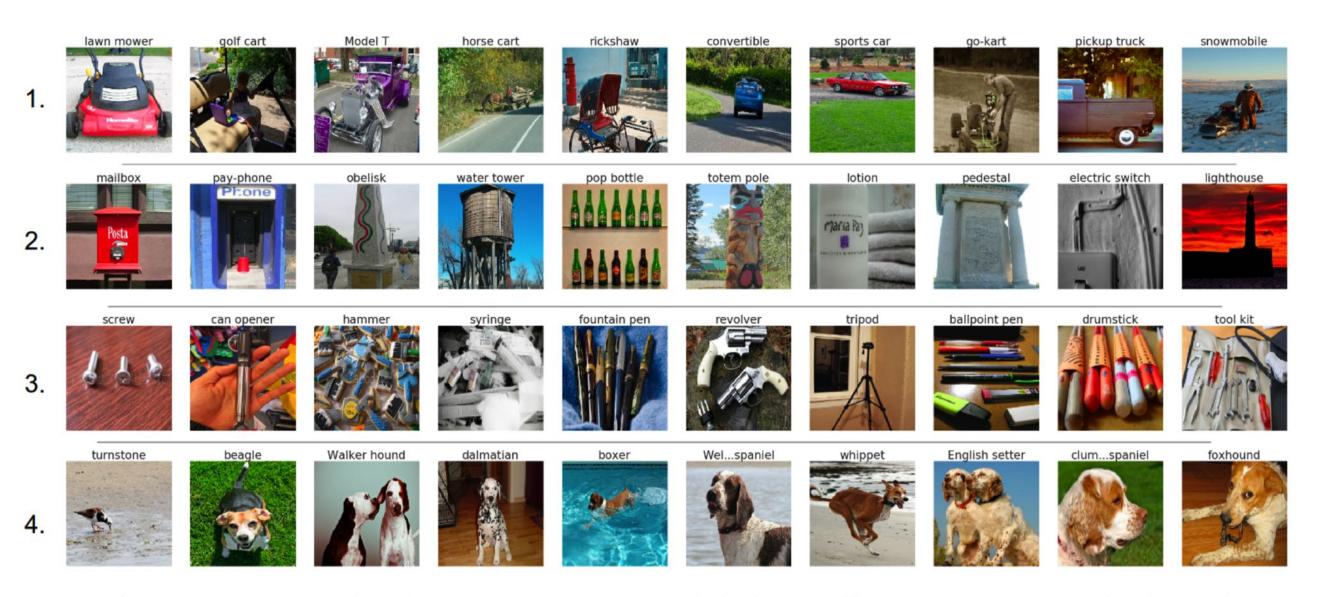


Figure 6: Top 10 classes with highest mean routing weight for 4 different experts in the final CondConv layer in our CondConv-MobileNetV1 (0.5x) model, as measured across the ImageNet validation set. Expert 1 is most activated for wheeled vehicles; expert 2 is most activated for rectangular structures; expert 3 is most activated for cylindrical household objects; expert 4 is most activated for brown and black dog breeds.







#### 部分代表性工作:

**Searching for Learning Dynamic Efficient Multi-**DeepLab V2 **U-Net** Routing **Scale Architecture TPAMI 2017 MICCAI** 2015 NeurIPS 2018 **CVPR 2020 NAS-based Human Design Human Design Dynamic** DeepLab V3 **FCN Auto-DeepLab PSPNet** DeepLab V3+ **CVPR 2015 CVPR 2017 CVPR 2019** Arxiv 2017 **NAS-based Human Design Human Design** ECCV 2018

**Human Design** 





### **Fully Convolutional Network**

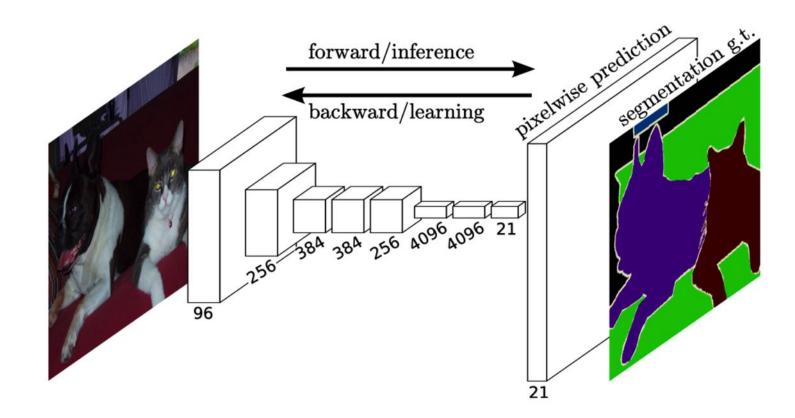
#### **Fully Convolutional Networks for Semantic Segmentation**

Jonathan Long\* Evan Shelhamer\* Trevor Darrell UC Berkeley

{jonlong, shelhamer, trevor}@cs.berkeley.edu

#### **Motivation:**

将分类网络结构卷积化,使用全卷积网络来输出和输入相对应的分割预测结果。并提出使用多层级融合的结构来获取多尺度特征。



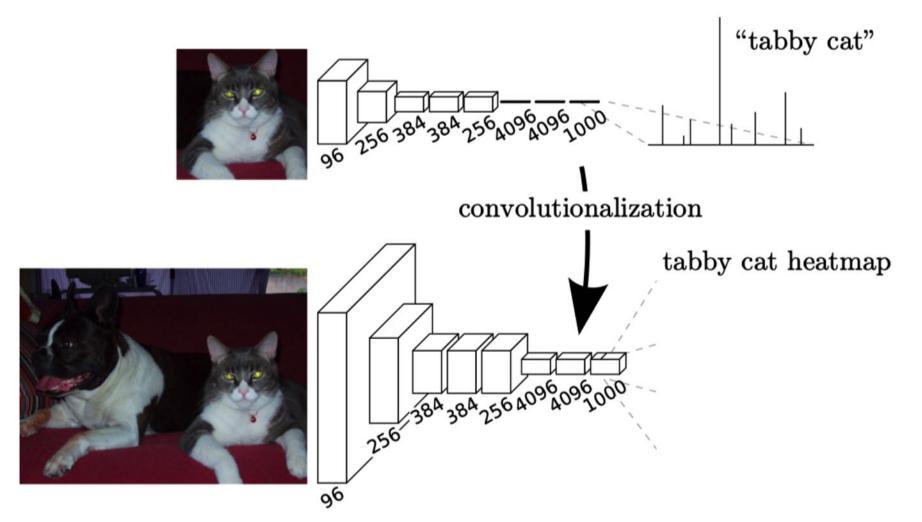


Figure 2. Transforming fully connected layers into convolution layers enables a classification net to output a heatmap. Adding layers and a spatial loss (as in Figure 1) produces an efficient machine for end-to-end dense learning.





### Fully Convolutional Network

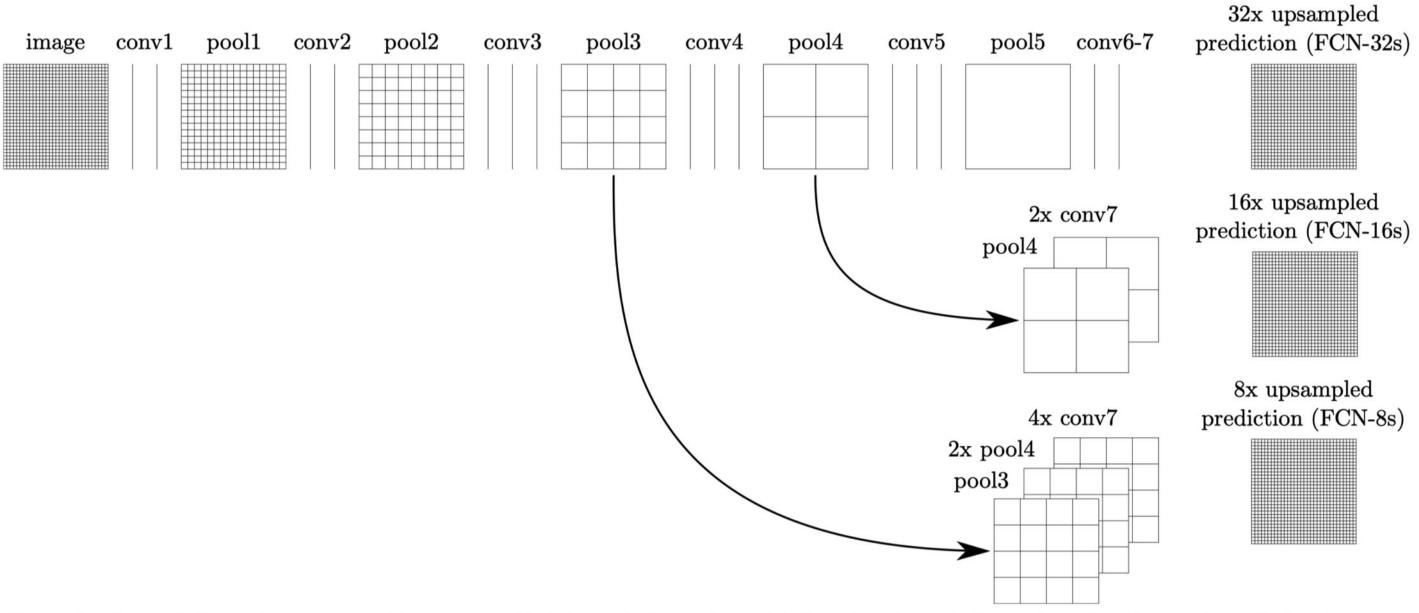


Figure 3. Our DAG nets learn to combine coarse, high layer information with fine, low layer information. Pooling and prediction layers are shown as grids that reveal relative spatial coarseness, while intermediate layers are shown as vertical lines. First row (FCN-32s): Our single-stream net, described in Section 4.1, upsamples stride 32 predictions back to pixels in a single step. Second row (FCN-16s): Combining predictions from both the final layer and the pool 4 layer, at stride 16, lets our net predict finer details, while retaining high-level semantic information. Third row (FCN-8s): Additional predictions from pool 3, at stride 8, provide further precision.

Table 2. Comparison of skip FCNs on a subset<sup>7</sup> of PASCAL VOC 2011 segval. Learning is end-to-end, except for FCN-32s-fixed, where only the last layer is fine-tuned. Note that FCN-32s is FCN-VGG16, renamed to highlight stride.

|                                               | pixel | mean        | mean        | f.w. |
|-----------------------------------------------|-------|-------------|-------------|------|
|                                               | acc.  | acc.        | IU          | IU   |
| FCN-32s-fixed                                 | 83.0  | 59.7        | 45.4        | 72.0 |
| FCN-32s                                       | 89.1  | 73.3        | 59.4        | 81.4 |
| FCN-16s                                       | 90.0  | 75.7        | 62.4        | 83.0 |
| FCN-32s-fixed<br>FCN-32s<br>FCN-16s<br>FCN-8s | 90.3  | <b>75.9</b> | <b>62.7</b> | 83.2 |

Table 3. Our fully convolutional net gives a 20% relative improvement over the state-of-the-art on the PASCAL VOC 2011 and 2012 test sets and reduces inference time.

|            | mean IU      | mean IU      | inference              |
|------------|--------------|--------------|------------------------|
|            | VOC2011 test | VOC2012 test | time                   |
| R-CNN [10] | 47.9         | =            | -                      |
| SDS [15]   | 52.6         | 51.6         | $\sim 50 \mathrm{\ s}$ |
| FCN-8s     | 62.7         | 62.2         | $\sim$ 175 ms          |





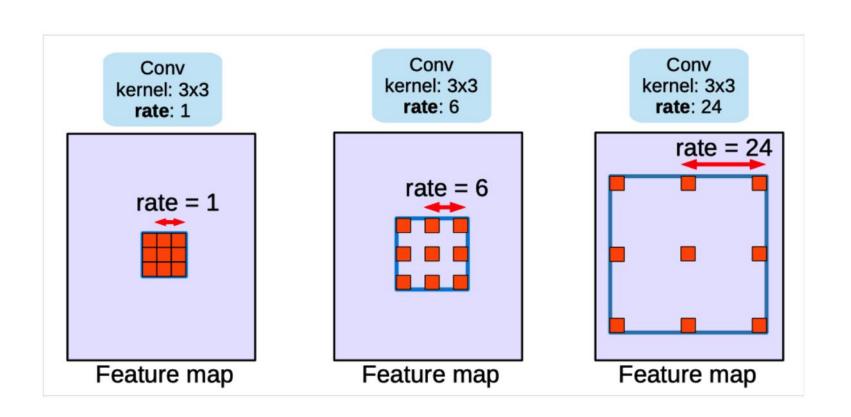
### DeepLab V3

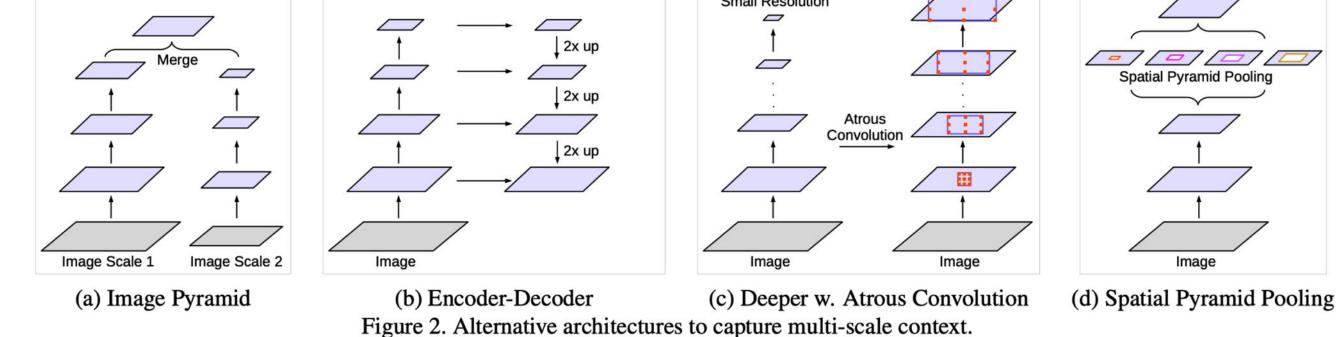
#### **Rethinking Atrous Convolution for Semantic Image Segmentation**

Liang-Chieh Chen George Papandreou Florian Schroff Hartwig Adam Google Inc. {lcchen, gpapan, fschroff, hadam}@google.com

#### **Motivation:**

设计基于空洞卷积的模块并结合DeepLab V2中提出的ASPP来更好地编码全局特征,在不使用DenseCRF的情况下获得更好的结果。





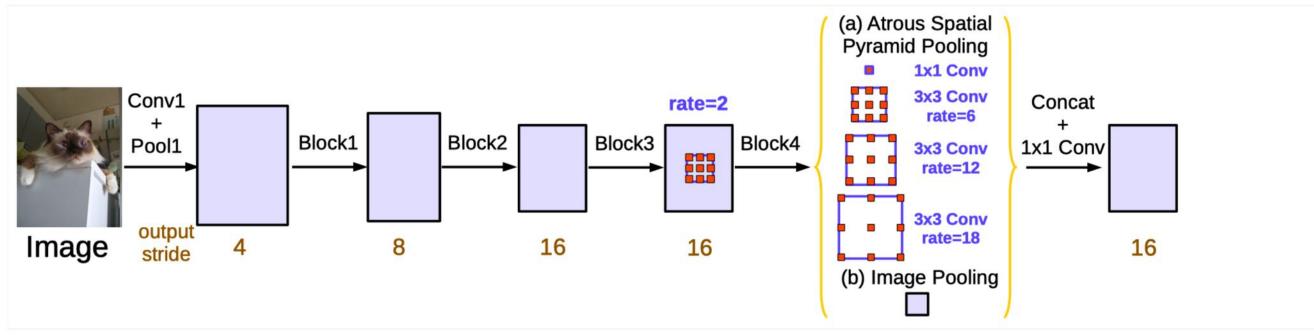


Figure 5. Parallel modules with atrous convolution (ASPP), augmented with image-level features.







#### **Auto-DeepLab:**

#### **Hierarchical Neural Architecture Search for Semantic Image Segmentation**

Chenxi Liu<sup>1</sup>\*, Liang-Chieh Chen<sup>2</sup>, Florian Schroff<sup>2</sup>, Hartwig Adam<sup>2</sup>, Wei Hua<sup>2</sup>,
Alan Yuille<sup>1</sup>, Li Fei-Fei<sup>3</sup>

<sup>1</sup>Johns Hopkins University <sup>2</sup>Google <sup>3</sup>Stanford University

#### **Motivation:**

针对场景分割,将NAS应用到整个网络结构层面的搜索,使用Viterbi算法来找到空间中激活权重最大的网络连接,并取得了不错的效果。

|                   |      |         | į.         |      |      |
|-------------------|------|---------|------------|------|------|
| Model             | Cell | Network | Dataset    | Days | Task |
| ResNet [25]       | Х    | Х       | -          | -    | Cls  |
| DenseNet [31]     | X    | X       | -          | -    | Cls  |
| DeepLabv3+ [11]   | X    | X       | -          | -    | Seg  |
| NASNet [93]       | 1    | Х       | CIFAR-10   | 2000 | Cls  |
| AmoebaNet [62]    | ✓    | ×       | CIFAR-10   | 2000 | Cls  |
| PNASNet [47]      | 1    | ×       | CIFAR-10   | 150  | Cls  |
| <b>DARTS</b> [49] | 1    | X       | CIFAR-10   | 4    | Cls  |
| DPC [6]           | 1    | ×       | Cityscapes | 2600 | Seg  |
| Auto-DeepLab      | 1    | ✓       | Cityscapes | 3    | Seg  |

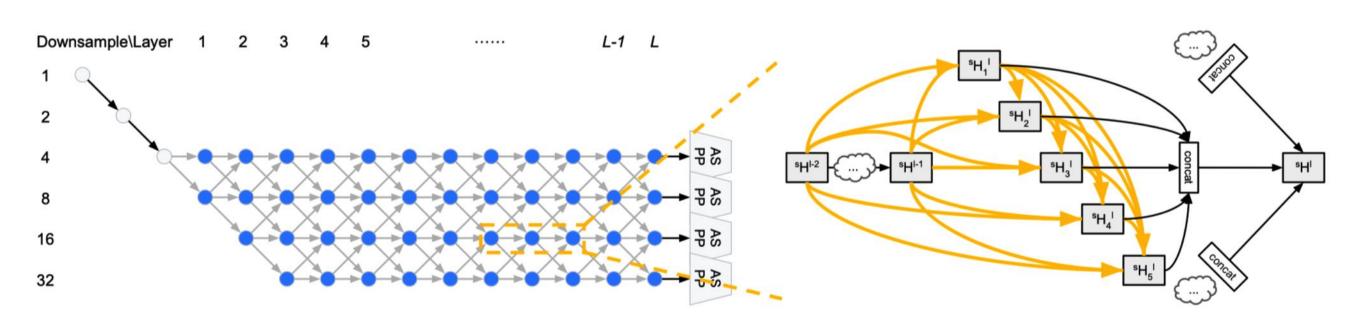


Figure 1: Left: Our network level search space with L=12. Gray nodes represent the fixed "stem" layers, and a path along the blue nodes represents a candidate network level architecture. Right: During the search, each cell is a densely connected structure as described in Sec. 4.1.1. Every yellow arrow is associated with the set of values  $\alpha_{j\to i}$ . The three arrows after concat are associated with  $\beta^l_{s\to s}$ ,  $\beta^l_{s\to s}$ ,  $\beta^l_{s\to s}$ , respectively, as described in Sec. 4.1.2. Best viewed in color.

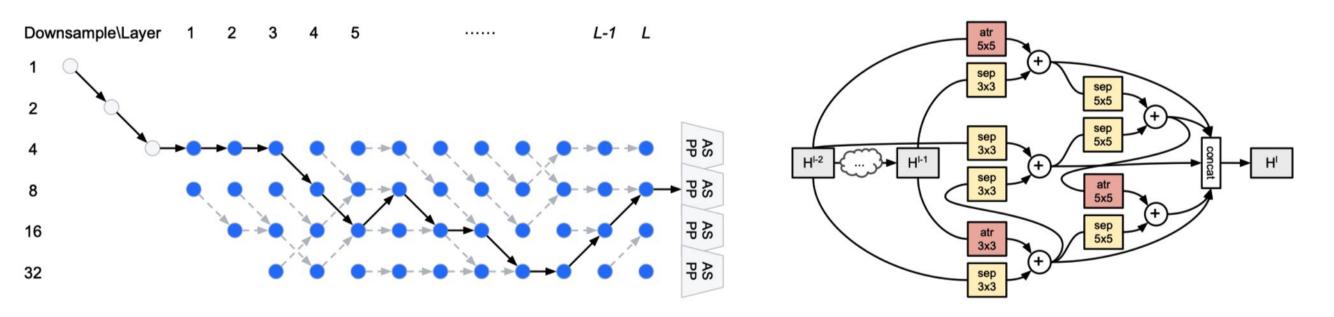


Figure 3: The Auto-DeepLab architecture found by our Hierarchical Neural Architecture Search on Cityscapes. Gray dashed arrows show the connection with maximum  $\beta$  at each node. **atr:** atrous convolution. **sep:** depthwise-separable convolution.



- 1 动态网络简介
- 2 相关领域研究进展
- 3 动态网络与场景分割
- 4 未来展望







# Learning Dynamic Routing for Semantic Segmentation

#### **Learning Dynamic Routing for Semantic Segmentation**

Yanwei Li<sup>1,2</sup>, Lin Song<sup>3</sup>, Yukang Chen<sup>1,2</sup>, Zeming Li<sup>4</sup>, Xiangyu Zhang<sup>4</sup>, Xingang Wang<sup>1</sup>, Jian Sun<sup>4</sup>

<sup>1</sup>Institute of Automation, Chinese Academy of Sciences

<sup>2</sup>University of Chinese Academy of Sciences

<sup>3</sup>Xi'an Jiaotong University <sup>4</sup>Megvii Technology

#### **Motivation:**

实际场景中物体尺寸分布往往存在着巨大的差异。针对不同输入图片的尺寸分布,选择不同的前向推断路径进行处理,并针对给定的计算资源限制进行调整。

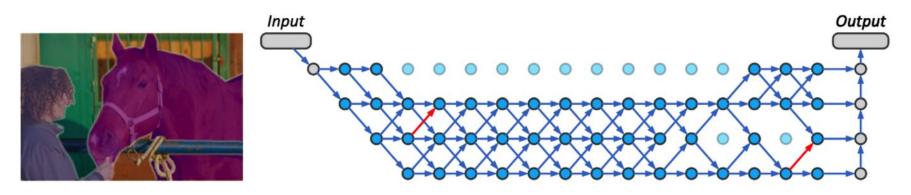


**Paper** 

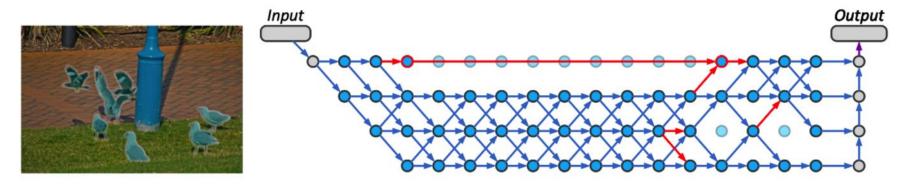
https://arxiv.org/abs/2003.10401

https://github.com/yanwei-li/DynamicRouting

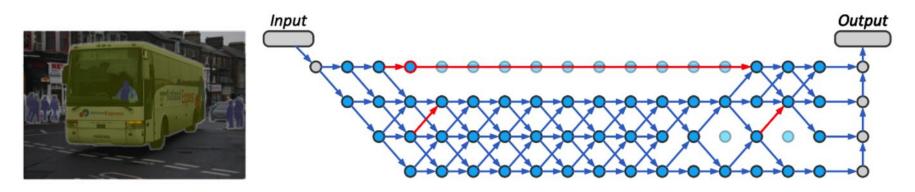
Code



(a) Network architecture of large-scale input



(b) Network architecture of small-scale input



(c) Network architecture of mixed-scale input

Figure 1. Given inputs with different scale distributions, the proposed dynamic routing will choose corresponding forward paths. For example, the architecture of *large-scale* instances 1(a) could ignore low-level features. The *small-scale* objects 1(b) may depend on low-level details as well as higher resolution. And the *mixed-scale* things 1(c) would enjoy both connection patterns. Red lines in diagrams denote the difference among them.





### **全** 整体网络结构

针对场景分割所设计的动态网络结构,在空间中的每一个节点中均可动态地选择上采样、保持分辨率、或进行下采样。所设计的动态网络能够支持每次前向推断时的**跨层连接**和**多路径推断**。

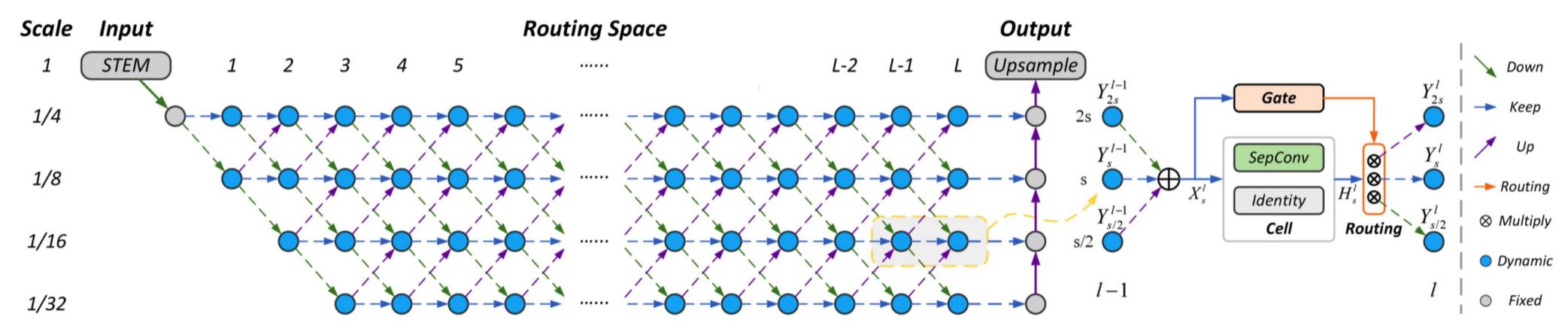


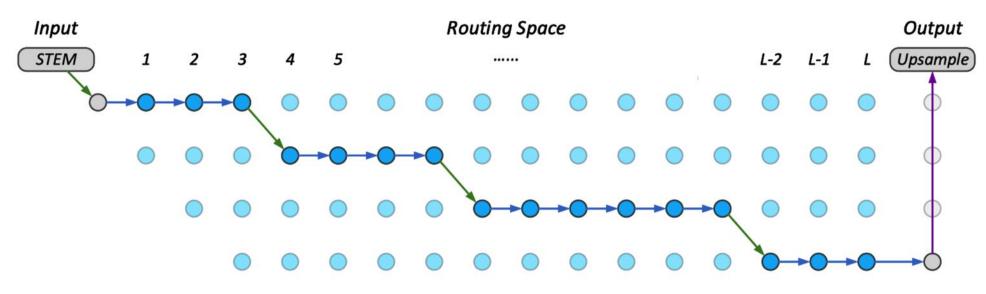
Figure 2. The proposed dynamic routing framework for semantic segmentation. Left: The routing space with layer L and max down-sampling rate 32. The beginning STEM and the final Upsample block are fixed for stability. Dashed lines denote alternative paths for dynamic routing. Right: Dynamic routing process at the cell level. Given the summed input from the former layer, we first generate activating weights using the Soft Conditional Gate. Paths with corresponding weights above zero are marked as activated, which would be selected for feature transformation. More details about the network are elaborated in Sec. 3.4. Best viewed in color.



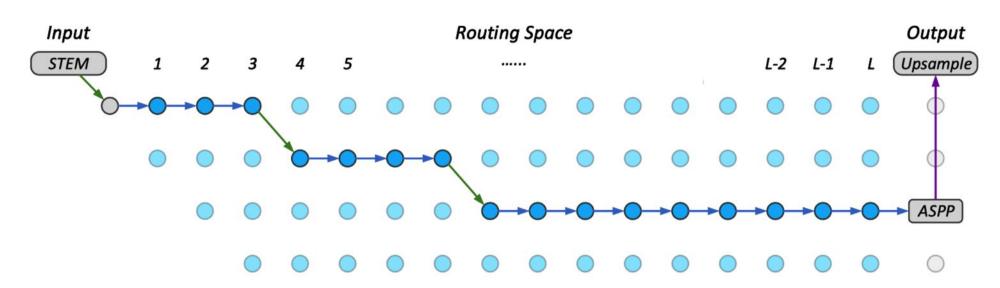


### **国** 动态网络空间

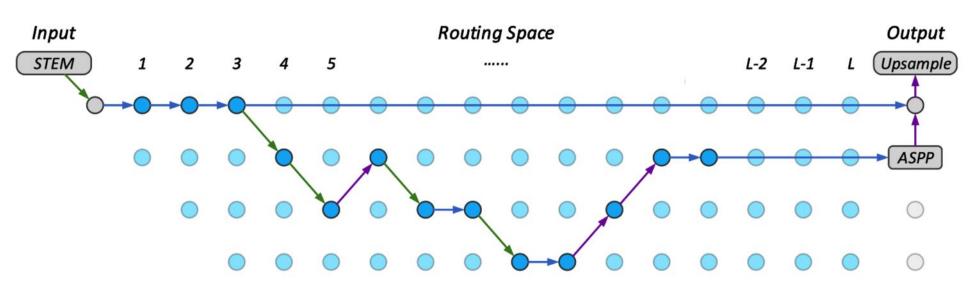
在所设计的动态网络空间中对经典网络进行建模,可以将经典网络结构动态网络当做单次前向推断的子集。



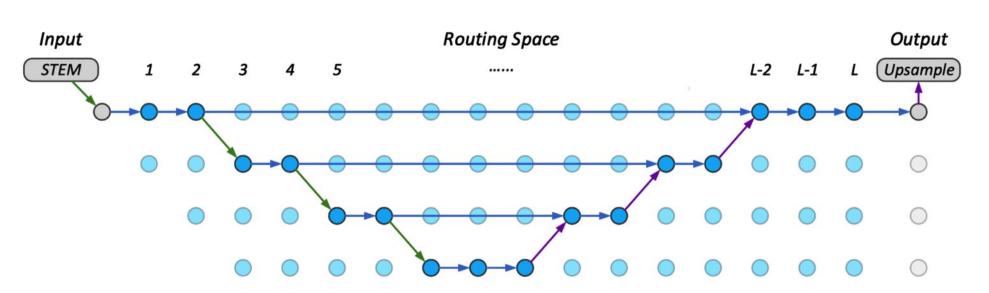
(a) Network architecture modeled from FCN-32s [24]



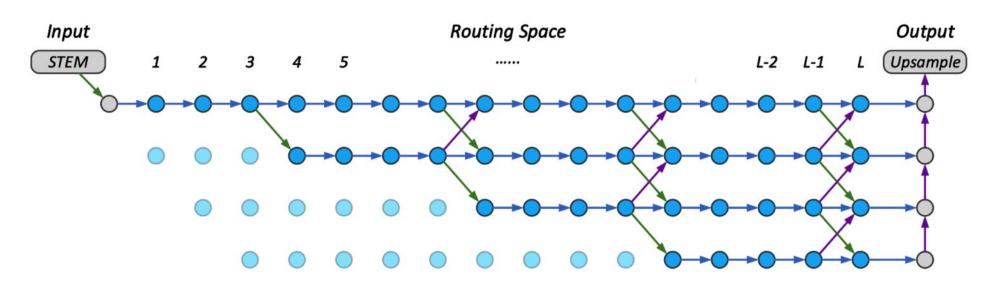
(c) Network architecture modeled from DeepLabV3 [5]



(e) Network architecture modeled from Auto-DeepLab [22]



(b) Network architecture modeled from U-Net [28]

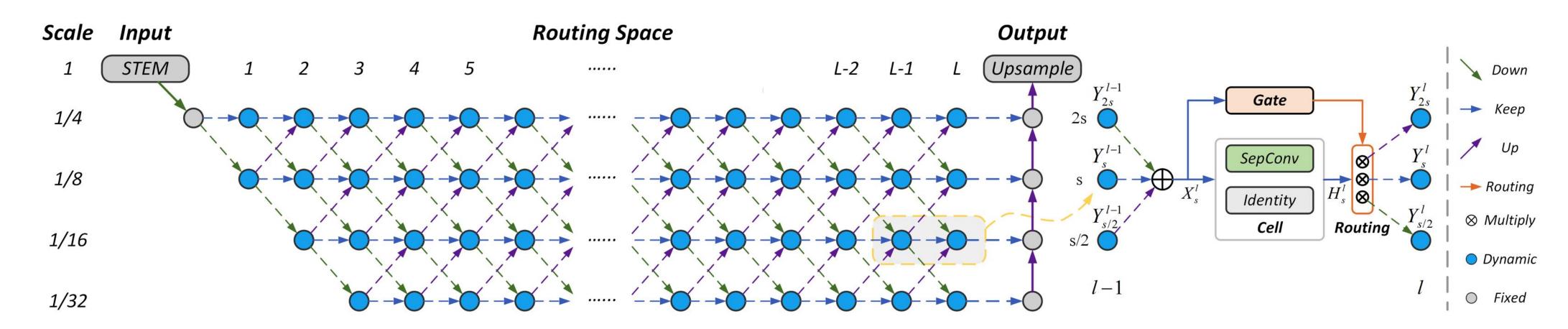


(d) Network architecture modeled from HRNetV2 [32]





### **国** 动态路径选择过程



### Cell操作

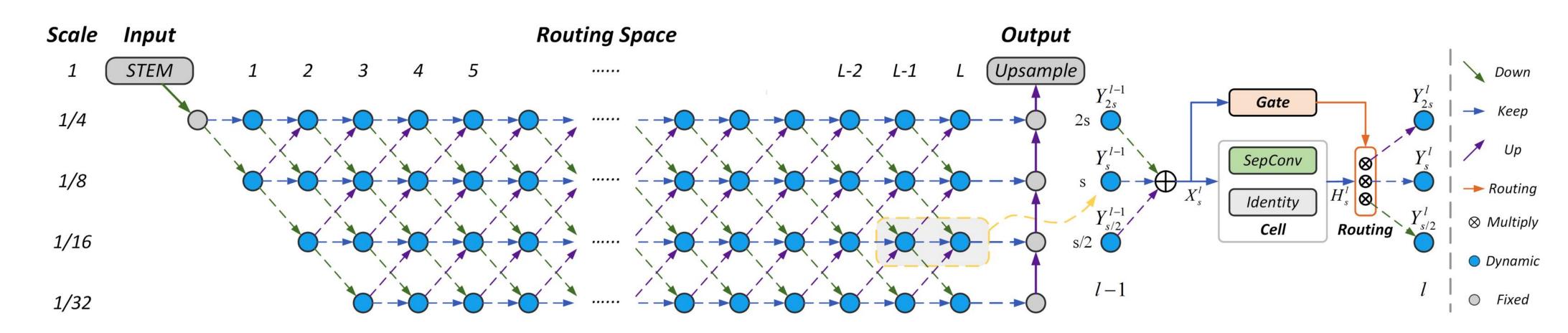
进行多尺度特征聚合

$$\mathbf{H}_s^l = \sum_{O^i \in \mathcal{O}} O^i(\mathbf{X}_s^l)$$





## **国** 动态路径选择过程



### Cell操作

进行多尺度特征聚合

$$\mathbf{H}_s^l = \sum_{O^i \in \mathcal{O}} O^i(\mathbf{X}_s^l)$$

### 软条件门控

根据输入特征选择该节点的前向推断路径

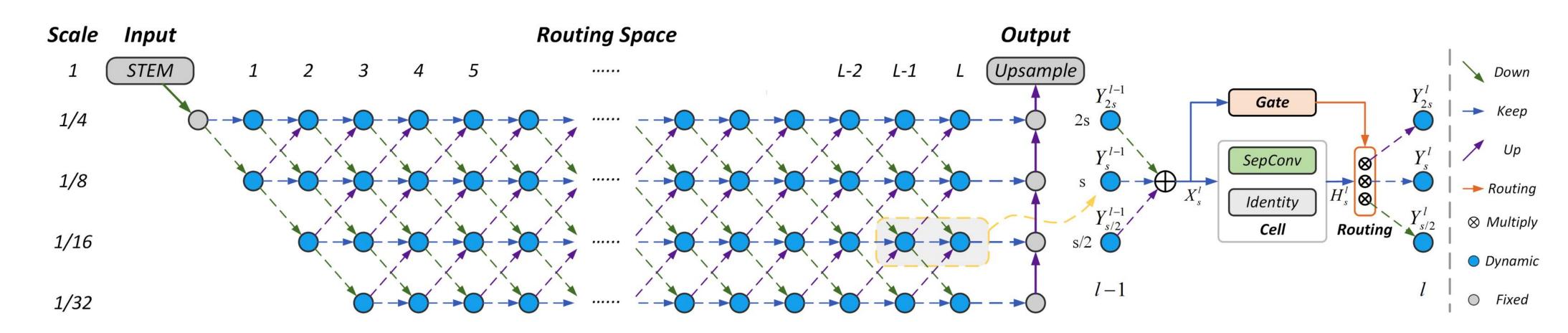
$$\mathbf{G}_{s}^{l} = \mathcal{F}(\omega_{s,2}^{l}, \mathcal{G}(\sigma(\mathcal{N}(\mathcal{F}(w_{s,1}^{l}, \mathbf{X}_{s}^{l}))))) + \beta_{s}^{l}$$

$$\delta(\cdot) = \max(0, \operatorname{Tanh}(\cdot)) \quad \mathbf{Y}_j^l = \alpha_{s \to j}^l \mathcal{T}_{s \to j}(\mathbf{H}_s^l)$$





### 动态路径选择过程



### Cell操作

进行多尺度特征聚合

$$\mathbf{H}_s^l = \sum_{O^i \in \mathcal{O}} O^i(\mathbf{X}_s^l)$$

### 软条件门控

$$\mathbf{G}_{s}^{l} = \mathcal{F}(\omega_{s,2}^{l}, \mathcal{G}(\sigma(\mathcal{N}(\mathcal{F}(w_{s,1}^{l}, \mathbf{X}_{s}^{l}))))) + \beta_{s}^{l}$$

$$\delta(\cdot) = \max(0, \operatorname{Tanh}(\cdot)) \quad \mathbf{Y}_j^l = \alpha_{s \to j}^l \mathcal{T}_{s \to j}(\mathbf{H}_s^l)$$

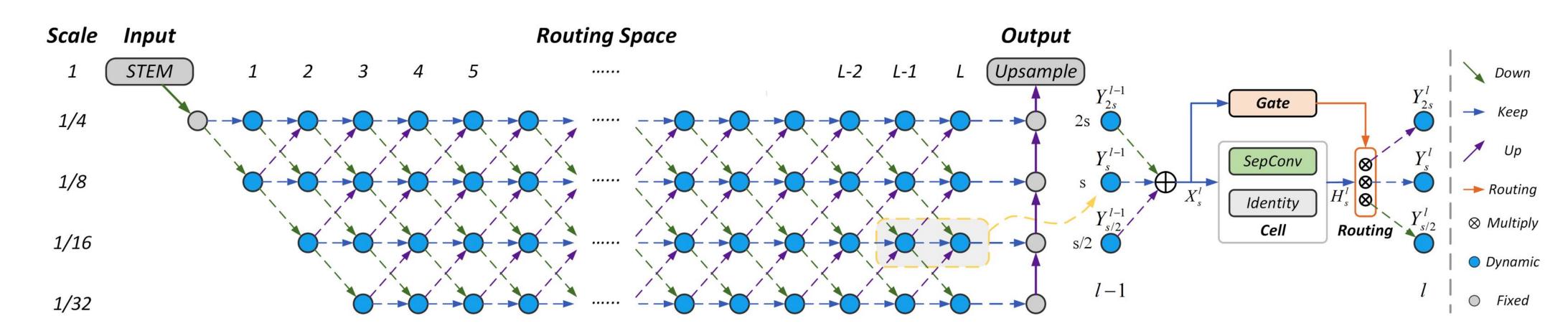
$$\mathbf{H}_{s}^{l} = \left\{ \begin{array}{ll} \mathbf{X}_{s}^{l} & \sum_{j} \alpha_{s \to j}^{l} = 0 \\ \sum_{O^{i} \in \mathcal{O}} O^{i}(\mathbf{X}_{s}^{l}) & \sum_{j} \alpha_{s \to j}^{l} > 0 \end{array} \right.$$

根据输入特征选择该节  
点的前向推断路径 
$$\mathbf{Y}_{j}^{l} = \left\{ \begin{array}{ll} 0 & \sum_{j} \alpha_{s \to j}^{l} = 0, \ j \neq s \\ \mathbf{H}_{s}^{l} & \sum_{j} \alpha_{s \to j}^{l} = 0, \ j = s \\ \alpha_{s \to j}^{l} \mathcal{T}_{s \to j}(\mathbf{H}_{s}^{l}) & \sum_{j} \alpha_{s \to j}^{l} > 0 \end{array} \right.$$





### 动态路径选择过程



### Cell操作

进行多尺度特征聚合

$$\mathbf{H}_s^l = \sum_{O^i \in \mathcal{O}} O^i(\mathbf{X}_s^l)$$

### 软条件门控

根据输入特征选择该节 点的前向推断路径

$$\mathbf{G}_{s}^{l} = \mathcal{F}(\omega_{s,2}^{l}, \mathcal{G}(\sigma(\mathcal{N}(\mathcal{F}(w_{s,1}^{l}, \mathbf{X}_{s}^{l}))))) + \beta_{s}^{l}$$

$$\delta(\cdot) = \max(0, \operatorname{Tanh}(\cdot)) \quad \mathbf{Y}_j^l = \alpha_{s \to j}^l \mathcal{T}_{s \to j}(\mathbf{H}_s^l)$$

$$\mathbf{H}_{s}^{l} = \left\{ \begin{array}{ll} \mathbf{X}_{s}^{l} & \sum_{j} \alpha_{s \to j}^{l} = 0\\ \sum_{O^{i} \in \mathcal{O}} O^{i}(\mathbf{X}_{s}^{l}) & \sum_{j} \alpha_{s \to j}^{l} > 0 \end{array} \right.$$

$$\mathbf{Y}_{j}^{l} = \begin{cases} 0 & \sum_{j} \alpha_{s \to j}^{l} = 0, \ j \neq s \\ \mathbf{H}_{s}^{l} & \sum_{j} \alpha_{s \to j}^{l} = 0, \ j = s \\ \alpha_{s \to j}^{l} \mathcal{T}_{s \to j}(\mathbf{H}_{s}^{l}) & \sum_{j} \alpha_{s \to j}^{l} > 0 \end{cases} \qquad \mathcal{C}(\operatorname{Space}) = \sum_{l \leq L} \sum_{s \leq 1/4} \mathcal{C}(\operatorname{Node}_{s}^{l})$$

$$\mathcal{L}_{C} = (\mathcal{C}(\operatorname{Space})/C - \mu)^{2} \qquad \mathcal{L} = \lambda_{1} \mathcal{L}_{N} + \lambda_{2} \mathcal{L}_{C}$$

### 给定计算约束

在给定计算资源约束的情况下进行端 到端的训练

$$\mathcal{C}(\text{Node}_{s}^{l}) = \mathcal{C}(\text{Cell}_{s}^{l}) + \mathcal{C}(\text{Gate}_{s}^{l}) + \mathcal{C}(\text{Trans}_{s}^{l}) \\
= \max(\alpha_{s}^{l}) \sum_{O^{i} \in \mathcal{O}} \mathcal{C}(O^{i}) + \mathcal{C}(\text{Gate}_{s}^{l}) \\
+ \sum_{j} \alpha_{s \to j}^{l} \mathcal{C}(\mathcal{T}_{s \to j})$$

$$\mathcal{C}(\text{Space}) = \sum_{I \in \mathcal{I}} \sum_{C \in \mathcal{C}} \mathcal{C}(\text{Node}_{s}^{l})$$

$$\mathcal{L}_{\mathrm{C}} = (\mathcal{C}(\mathrm{Space})/\mathrm{C} - \mu)^2$$
  $\mathcal{L} = \lambda_1 \mathcal{L}_{\mathrm{N}} + \lambda_2 \mathcal{L}_{\mathrm{C}}$ 





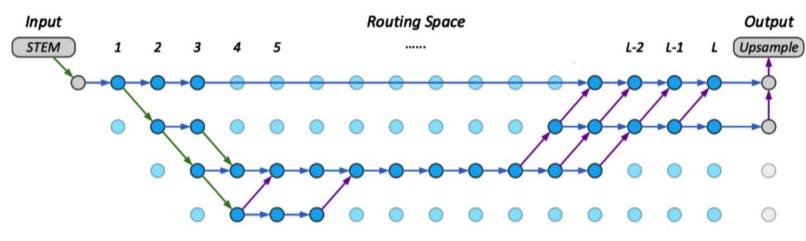
## **의** 动态路径选择实验

#### 相似资源消耗的实验对比

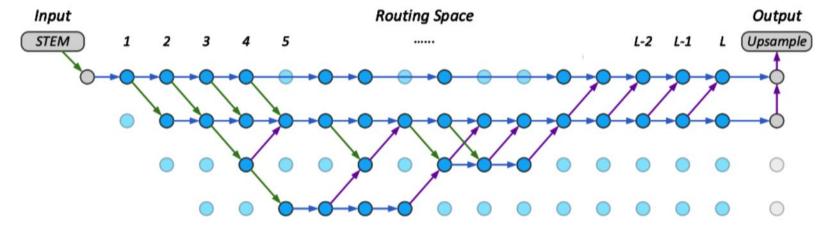
- 在动态网络空间中对经典的网络结构进行建模,并对动态网络结构进行约束,在**相似的计算量**下进行比较。
- 从动态网络中抽取出95%的前向推断均会选择的路径作为静态的基础网络加入比较实验。

Table 1. Comparisons with classic architectures on the Cityscapes val set. 'Dynamic' denotes the proposed dynamic routing. 'A', 'B', and 'C' represent different computational budgets in Sec. 4.4.3. 'Common' indicates the common connection pattern of corresponding dynamic network. FLOPs<sub>Avg</sub>, FLOPs<sub>Max</sub>, and FLOPs<sub>Min</sub> represent the *Average*, *Maximum*, and *Minimum* FLOPs of the network, respectively. All of the architectures are sampled from the designed routing space and evaluated by ourself under the same setting.

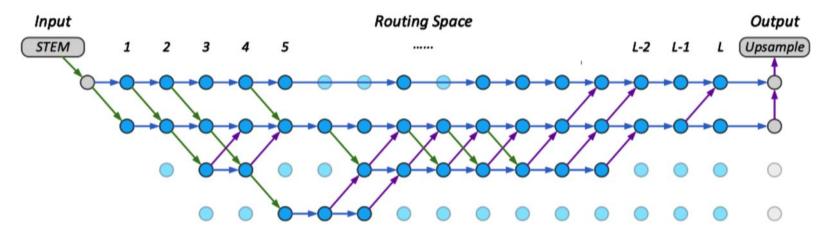
| Method           | Dynamic | Modeled from      | mIoU(%) | $FLOPs_{Avg}(G)$ | $FLOPs_{Max}(G)$ | $FLOPs_{Min}(G)$ | Params(M) |
|------------------|---------|-------------------|---------|------------------|------------------|------------------|-----------|
|                  | ×       | FCN-32s [24]      | 66.9    | 35.1             | 35.1             | 35.1             | 2.9       |
| Handcrafted      | ×       | DeepLabV3 [5]     | 67.0    | 42.5             | 42.5             | 42.5             | 3.7       |
| Handcraned       | ×       | U-Net [28]        | 71.6    | 53.9             | 53.9             | 53.9             | 6.1       |
|                  | ×       | HRNetV2 [32]      | 72.5    | 62.5             | 62.5             | 62.5             | 5.4       |
| Searched         | ×       | Auto-DeepLab [22] | 67.2    | 33.1             | 33.1             | 33.1             | 2.5       |
| Common-A         | Х       | Dynamic-A         | 71.6    | 41.6             | 41.6             | 41.6             | 4.1       |
| Common-B         | ×       | Dynamic-B         | 73.0    | 53.7             | 53.7             | 53.7             | 4.3       |
| Common-C         | ×       | Dynamic-C         | 73.2    | 57.1             | 57.1             | 57.1             | 4.5       |
| Dynamic-A        | ✓       | Routing-Space     | 72.8    | 44.9             | 48.2             | 43.5             | 17.8      |
| <b>Dynamic-B</b> | ✓       | Routing-Space     | 73.8    | 58.7             | 63.5             | 56.8             | 17.8      |
| <b>Dynamic-C</b> | ✓       | Routing-Space     | 74.6    | 66.6             | 71.6             | 64.3             | 17.8      |



(a) Network architecture of Common-A



(b) Network architecture of Common-B



(c) Network architecture of Common-C

Figure 4. Network architectures of Common-A, B, C, which are extracted from Dynamic models with different budget constraints in Tab. 1, are visualized in 4(a), 4(b), and 4(c), respectively.







### Cell内部不同操作的实验

Table 2. Comparisons among different cell components on the Cityscapes val set. ' $\times$ 2' and ' $\times$ 3' mean stacking 2 and 3 SepConv3 $\times$ 3, respectively. Due to the data-dependent property of the dynamic routing, we report the *average* FLOPs here.

| Cell Operation                 | mIoU(%) | FLOPs(G) | Params(M) |
|--------------------------------|---------|----------|-----------|
| BottleNeck [16]                | 73.7    | 1134.8   | 203.9     |
| MBConv [29]                    | 75.0    | 323.8    | 48.2      |
| SepConv $3\times3$             | 71.2    | 81.4     | 12.6      |
| SepConv3 $\times$ 3 $\times$ 2 | 76.1    | 119.5    | 17.8      |
| SepConv $3\times3\times3$      | 75.2    | 153.8    | 22.9      |

### 门控网络中不同激活函数的实验

Table 3. Comparisons among different activation functions on the Cityscapes *val* set. Due to the data-dependent property of the dynamic routing, we report the *average* FLOPs here.

| Activation   | mIoU(%) | FLOPs(G) | Params(M) |
|--------------|---------|----------|-----------|
| Fix          | 74.5    | 103.1    | 15.3      |
| Softmax      | 74.1    | 120.0    | 17.8      |
| Sigmoid      | 75.9    | 120.0    | 17.8      |
| max(0, Tanh) | 76.1    | 119.5    | 17.8      |

#### 不同资源约束系数的实验

Table 4. Comparisons among different resource budgets on the Cityscapes val set.  $\lambda_2$  and  $\mu$  denote the coefficients for budget constraint in Sec. 3.3. Due to the data-dependent property of the dynamic routing, we report the *average* FLOPs here.

| Method      | $\lambda_2/\mu$ | mIoU(%) | FLOPs(G) | Params(M) |
|-------------|-----------------|---------|----------|-----------|
| Network-Fix | -               | 74.5    | 103.1    | 15.3      |
| Dynamic-A   | 0.8/0.1         | 72.8    | 44.9     | 17.8      |
| Dynamic-B   | 0.5/0.1         | 73.8    | 58.7     | 17.8      |
| Dynamic-C   | 0.5/0.2         | 74.6    | 66.6     | 17.8      |
| Dynamic-Raw | 0.0/0.0         | 76.1    | 119.5    | 17.8      |

### 不同训练步长的实验

Table 5. Experiments with different settings on Cityscapes *val* set with a single scale and no flipping. 'ImageNet' denotes ImageNet pre-training. 'SDP' indicates Scheduled Drop Path.

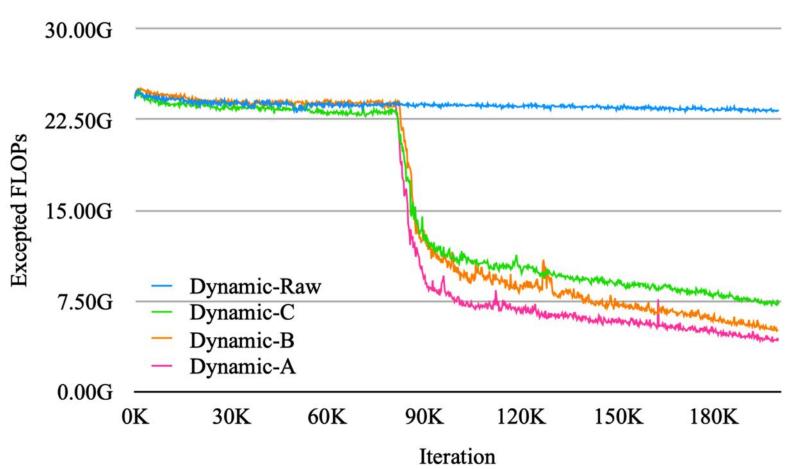
| Method      | Iter(K) | ImageNet | SDP | mIoU(%)     |
|-------------|---------|----------|-----|-------------|
| Network-Fix | 186     | X        | X   | 74.5        |
| Dynamic     | 186     | ×        | X   | 76.1        |
| Network-Fix | 372     | Х        | X   | 76.3        |
| Dynamic     | 372     | ×        | X   | 77.4        |
| Network-Fix | 558     | Х        | 1   | 76.7        |
| Dynamic     | 558     | ×        | ✓   | 78.3        |
| Network-Fix | 186     | ✓        | X   | 75.8        |
| Dynamic     | 186     | ✓        | X   | <b>78.6</b> |



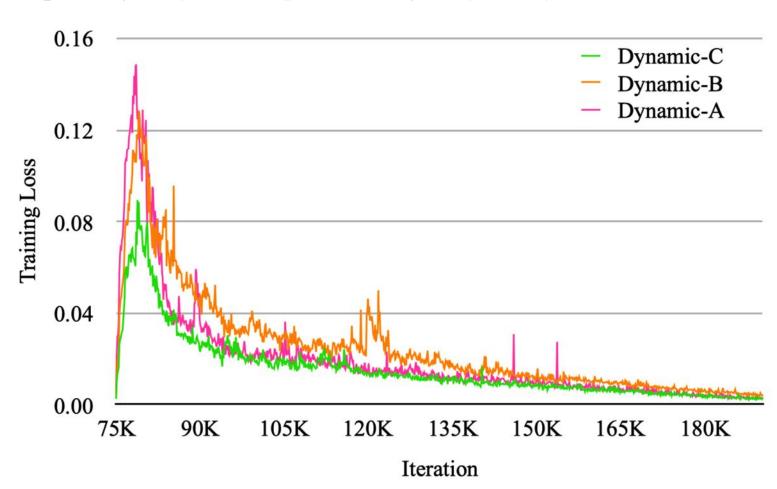


## 四 可视化分析

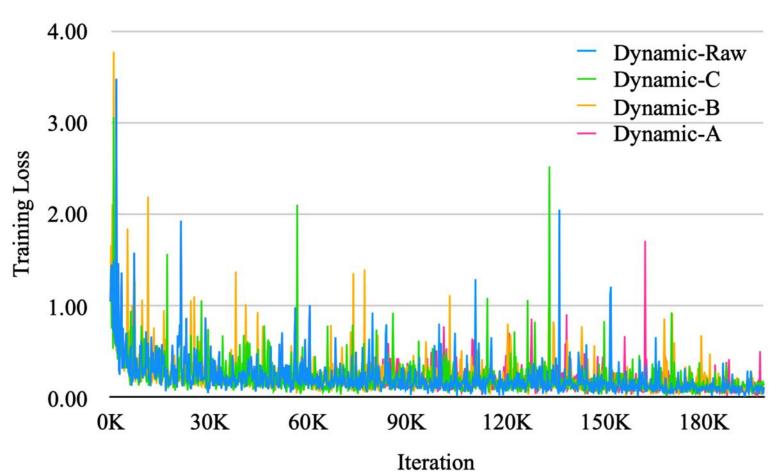
### 不同资源约束下的FLOPs期望



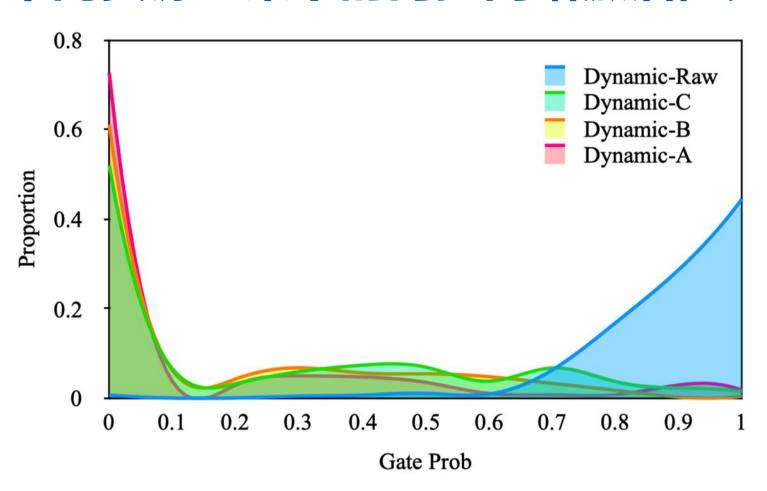
### 不同资源约束下的资源损失



### 不同资源约束下的网络整体损失



### 不同资源约束下的门控网络激活值分布





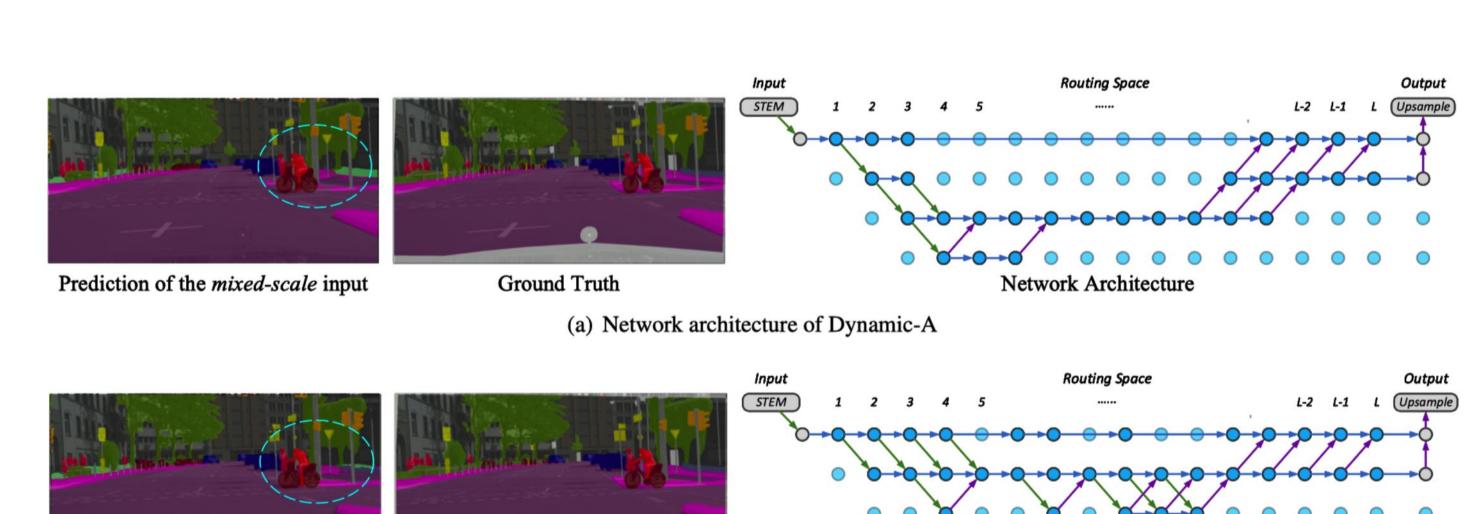
**Network Architecture** 



## **戸** 可视化分析

### 给定相同图片在不同计算约束下的 前向推断网络结构

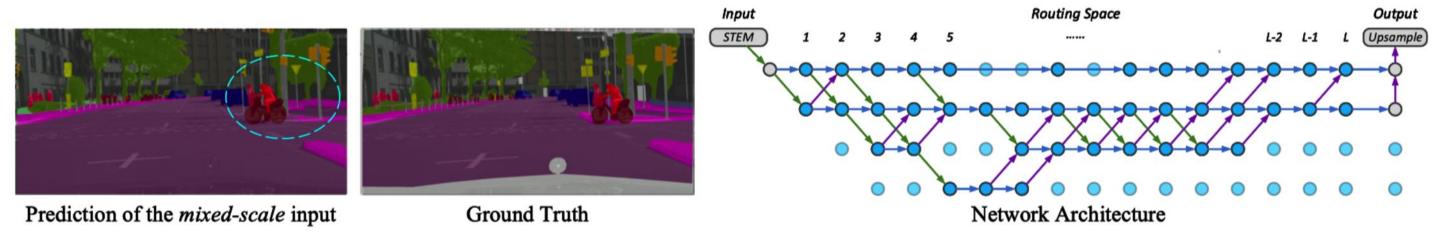
可以看出在资源预算较小的时候会使用更少的计算节点,并产生次优但仍可接受的预测结果。



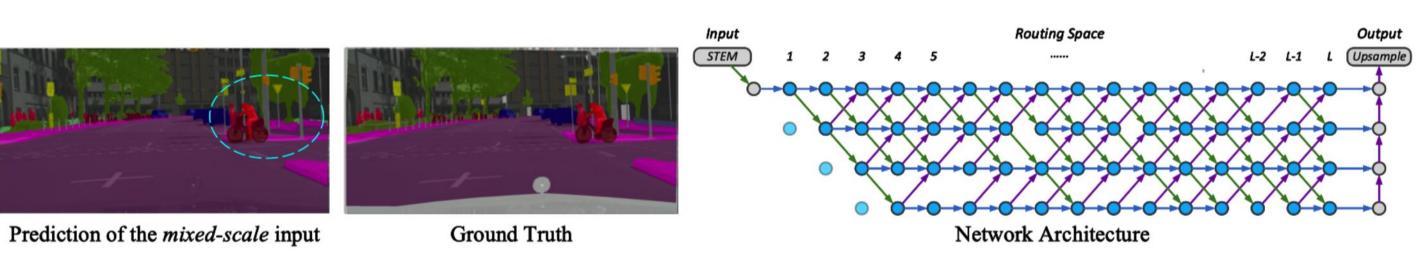


**Ground Truth** 

Prediction of the mixed-scale input



(c) Network architecture of Dynamic-C



(d) Network architecture of Dynamic-Raw





### **四** 结果分析

### 在Cityscapes和VOC 2012 数据集上的结果

动态网络在使用小得多的计算量的情况下取得了和SOTA相似的结果。并且使用上下文建立模块(如PSP模块)会有进一步提升。

Table 6. Comparisons with previous works on the Cityscapes.  $mIoU_{test}$  and  $mIoU_{val}$  denote performance on test set and val set respectively. Multi-scale and flipping strategy are used in test set but dropped in val set. We report FLOPs with input size  $1024 \times 2048$ .

| Method             | Backbone          | ${\sf mIoU}_{test}(\%)$ | $mIoU_{val}(\%)$ | FLOPs(G)          |
|--------------------|-------------------|-------------------------|------------------|-------------------|
| BiSenet [40]       | ResNet-18         | 77.7                    | 74.8             | 98.3 <sup>†</sup> |
| DeepLabV3 [5]      | ResNet-101-ASPP   | -                       | 78.5             | 1778.7            |
| Semantic FPN [19]  | ResNet-101-FPN    | -                       | 77.7             | 500.0             |
| DeepLabV3+ [6]     | Xception-71-ASPP  | -                       | 79.6             | 1551.1            |
| PSPNet [43]        | ResNet-101-PSP    | 78.4                    | 79.7             | 2017.6            |
| Auto-DeepLab* [22] | Searched-F20-ASPP | 79.9                    | 79.7             | 333.3             |
| Auto-DeepLab* [22] | Searched-F48-ASPP | 80.4                    | 80.3             | 695.0             |
| Dynamic*           | Layer16           | 79.1                    | 78.3             | 111.7             |
| Dynamic            | Layer16           | 79.7                    | 78.6             | 119.4             |
| Dynamic            | Layer33           | 80.0                    | 79.2             | 242.3             |
| Dynamic            | Layer33-PSP       | 80.7                    | <b>79.7</b>      | 270.0             |

<sup>†</sup> estimated from corresponding settings

Table 7. Comparisons with previous works on the PASCAL VOC 2012.  $mIoU_{test}$  and  $mIoU_{val}$  denote performance on test set and val set respectively. Multi-scale and flipping strategy are used in test set but dropped in val set. We report FLOPs with input size  $512 \times 512$ .

| Method            | Backbone          | ${ m mIoU}_{test}(\%)$ | ${\sf mIoU}_{val}(\%)$ | FLOPs(G)          |
|-------------------|-------------------|------------------------|------------------------|-------------------|
| DeepLabV3 [5]     | MobileNet-ASPP    | ; <b>-</b>             | 75.3                   | 14.3              |
| DeepLabV3 [5]     | MobileNetV2-ASPP  | -                      | 75.7                   | 5.8               |
| Auto-DeepLab [22] | Searched-F20-ASPP | 82.5                   | 78.3                   | 41.7 <sup>†</sup> |
| Dynamic           | Layer16           | 82.8                   | 78.6                   | 14.9              |
| Dynamic           | Layer33           | 84.0                   | <b>79.0</b>            | 30.8              |

<sup>†</sup> estimated from corresponding settings

training from scratch



- 1 动态网络简介
- 2 相关领域研究进展
- 3 动态网络与场景分割
- 4 未来展望

## 未来展望



## 更多任务

## 将动态网络应 用至更多任务

动态网络在场景分割方面取得了不错的结果,这给我们在其他Dense Prediction的任务留下了充足的想象空间。实际上这种多尺度融合的预测结构对于其他任务同样有着重要在作用。

## 未来展望



## 更多任务

将动态网络应 用至更多任务

动态网络在场景分割方面取得了不错的结果, 这给我们在其他Dense Prediction的任务留下了充足的想象空间。实际上这种多尺度融合的预测结构对于其他任务同样有着重要在作用。

## 更加动态化

更充分利用动态模型容量

当前的动态路径选择方式仍存在改进的空间。由于资源损失函数的约束,同一动态网络中最大的模型FLOPs和最小模型FLOPs差距在10%以内。可以通过新的方式更加充分地利用动态模型容量。

## 未来展望



## 更多任务

将动态网络应 用至更多任务

动态网络在场景分割方面取得了不错的结果, 这给我们在其他 Dense Prediction的任务留下了充足的想象空间。实际上这种多尺度融合的预测结构对于其他任务同样有着重要在作用。

## 更加动态化

更充分利用动 态模型容量

当前的动态路径选择方式仍存在改进的空间。由于资源损失函数的约束,同一动态网络中最大的模型FLOPs和最小模型FLOPs差距在10%以内。可以通过新的方式更加充分地利用动态模型容量。

## 更快的速度

提升动态网络 的推断速度

由于当前所设计的动态网络需要逐层进行特征的聚合和运算,实际的推断速度仍存在提升的空间。可以设计新的动态网络结构或通过工程优化来加速前向推断,使其具有更广阔的应用场景。







PPT
<a href="http://yanwei-li.com/">http://yanwei-li.com/</a>



Paper
<a href="https://arxiv.org/abs">https://arxiv.org/abs</a>
/2003.10401



Code
<a href="https://github.com/yanwei-li/DynamicRouting">https://github.com/yanwei-li/DynamicRouting</a>

### **AD Time!**

旷视研究院 Base-Detection组招聘实习生和正式员工 欢迎砸简历给Team Leader lizeming@megvii.com

Thanks!