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Definition of 3D Object Detection
Locate and classify 3D objects from the given 
points or images.

Introduction

Difficulties in 3D Object Detection
• Input with image: lack accurate depth to establish 

structural representation for each object. 
• Input with LiDAR: lack sufficient context to classify 

different categories for each object. 
• Input with cross-modality is needed for accurate 

3D Object Detection
3D object detection with different input.

Input with image

Input with LiDAR
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Overview of multi-modal 3D Object Detection
Recent methods are roughly divided into Early-Fusion, Intermediate-
Fusion, and Late-Fusion according to the fusion position.

Introduction

Overview of multi-modality method for 3D detection [1]

[1] P3D Object Detection for Autonomous Driving: A Review and New Outlooks. arXiv, 2022.
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General pipeline for cross-modality fusion
Image and point cloud are respectively processed in 
each network. Then, features are fused for prediction.

Introduction

[2] PointAugmenting: Cross-Modal Augmentation for 3D Object Detection. In CVPR, 2021.

A general pipeline for  cross-modality fusion in 3D detection [2]

Key difficulties
• How to find cross-modality features?
• How to align cross-modality augmentation?
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Previous methods fuse in a point-to-point manner
• Find one-one correspondence across modality according to 

projection matrix.
• Fuse point feature and retrieved image features directly in a 

point-to-point manner.

Introduction

[3] Deep continuous fusion for multi-sensor 3d object detection. In ECCV, 2018.

Point-to-point fusion 
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Architecture of Deep Continuous Fusion [3]. Point-to-point feature retrieve process [3].

Drawback: constrained by the sparsity of point cloud.
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Previous methods damage consistent augmentation
• LiDAR: scene-level flipping, rescaling, and rotation.
• Image: no image-level data augmentation.
• Cross-modality: inverse LiDAR point to find correspondence.

Introduction

[4] Exploring Data Augmentation for Multi-Modality 3D Object Detection. arXiv:2012.12741, 2020.

Point-to-point fusion 
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Classic multi-modality transformation flow [4].

Drawback: out-of-sync augmentation damage consistency.
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Voxel Field Fusion maintain the consistency
• Feature representation: project augmented image features to 

voxel space and represent in a point-to-ray manner.
• Data augmentation: synced image-level augmentation 

according to that in point cloud.

Voxel Field Fusion

Point-to-ray fusion 
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The framework for 3D detection with voxel field fusion.
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[5] Voxel Field Fusion for 3D Object Detection. In CVPR, 2022.
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Mixed Augmentor
• Sample-added: supplement the RGB data of sampled 3D 

objects in a copy-paste manner, i.e., 3D GT-sampling.
• Sample-static: scene-level augmentation combined with 

image-level flipping and rescaling.

Voxel Field Fusion

Voxel Field Fusion process.
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Corresponding operations in the mixed augmentor.
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Mixed Augmentor
• Sample-added: supplement the RGB data of sampled 3D 

objects in a copy-paste manner, i.e., 3D GT-sampling.
• Sample-static: scene-level augmentation combined with 

image-level flipping and rescaling.

Voxel Field Fusion

Voxel Field Fusion process.
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Corresponding operations in the mixed augmentor.Ray Constructor
• Establish the cross-modality correspondence from voxel bin 

 to image pixels .vj pi

pi = vjTT
Voxel→Image, ∀vj ∈ ℛi .
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Efficient learnable sampler
• Sample vital image features for ray construction according to 

the importance of foreground objects.

Voxel Field Fusion

Toy examples of different sampling methods.
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Voxel Field Fusion process.Design choices
• Sample by uniformity: uniformly sample image features for ray 

construction.
• Sample by density: sample image features for ray construction 

according to the density of projected LiDAR points.
• Sample by sparsity: sample image features for ray construction 

according to the density of projected LiDAR points.
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Efficient learnable sampler
• Sample vital image features for ray construction according to 

the importance of foreground objects.

Voxel Field Fusion
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Voxel Field Fusion process.Design choices
• Sample by uniformity: uniformly sample image features for ray 

construction.
• Sample by density: sample image features for ray construction 

according to the density of projected LiDAR points.
• Sample by sparsity: sample image features for ray construction 

according to the density of projected LiDAR points.
• Sample by importance: sample image features for ray 

construction according to the predicted importance.
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Toy examples of different sampling methods.



Ray-voxel interaction
• Ray-wise fusion extends the operation and fuses, as well as 

newly generates, the high-responded features along the ray.

Voxel Field Fusion

Toy examples of different fusion methods.
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Voxel Field Fusion process.

Design choices
• Single fusion: only fuses the single point as traditional method.
• Local aggregation: aggregates all the neighboring features to 

the anchor voxel within a radius along the ray.
• Local propagation: propagates the feature of anchor voxel to 

all the neighboring points within a radius along the ray.
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Ray-voxel interaction
• Ray-wise fusion extends the operation and fuses, as well as 

newly generates, the high-responded features along the ray.

Voxel Field Fusion
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Voxel Field Fusion process.

Design choices
• Single fusion: only fuses the single point as traditional method.
• Local aggregation: aggregates all the neighboring features to 

the anchor voxel within a radius along the ray.
• Local propagation: propagates the feature of anchor voxel to 

all the neighboring points within a radius along the ray.
• Ray-wise fusion: (1) Training: distributes the existence 

probability of each point within a radius along the ray; (2) 
Inference: fuses all the high-responded points.

̂ℱ (xj, yj, zj) = ℱ(xj, yj, zj) + ωj f([FI
l,i, F′￼l,vj

]) .
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Toy examples of different fusion methods.



Weakness in previous work
• Using point cloud for feature reference reduces 

robustness of camera-only models.
• Previous approaches introduces semantic ambiguity.

Unified Representation
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A more unified representation is desired to 
bridge modality gap and facilitate interactions.



UVTR for unified representation
• Modality-specific Space: construct unified representation.
• Cross-modality interaction: feature learning across spaces.
• Transformer decoder: object-level interaction and prediction.

Unified Representation
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The framework of UVTR with multi-modality input.
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Similar feature representation and data 
augmentation for different modalities.

[6] Unifying Voxel-based Representation with Transformer for 3D Object Detection. arXiv:2206.00630, 2022.



Modality-specific Space 
• Given images captured from cameras and point cloud from 

LiDAR, different branches are utilized to generate and enhance 
voxel space for each modality 

Unified Representation

Details in the view transform.
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Design choices
• Image Voxel Space: construct voxel space from multi-view 

images using shared backbone and predicted depth.

DI(u, v) = Softmax(Conv(FI)(u, v))

Generate the depth distribution

Transfer image feature to voxel space

VI(x, y, z) = DI(u, v, d) × FI(u, v)
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Modality-specific Space 
• Given images captured from cameras and point cloud from 

LiDAR, different branches are utilized to generate and enhance 
voxel space for each modality. 

Unified Representation
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Design choices
• Image Voxel Space: construct voxel space from multi-view 

images using shared backbone and predicted depth.
• Point Voxel Space: construct voxel space from point cloud using 

sparse convolution.
• Voxel Encoder: feature interaction among adjacent voxels.
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Cross-modality Interaction
• The cross-modality interaction is proposed from two folds, i.e., 

transferring geometry-aware knowledge to images and fusing 
context-aware features with point clouds. 

Unified Representation
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Design choices
• Knowledge Transfer: optimize features of the student with 

guidance from the teacher during training.

Details in the knowledge transfer.

dKT = PL2(TP(x, y, z), SI(x, y, z))

Feature distance for knowledge transfer

Optimization objective for knowledge transfer

ℒKT = 1
N ∑i (dKT)
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Cross-modality Interaction
• The cross-modality interaction is proposed from two folds, i.e., 

transferring geometry-aware knowledge to images and fusing 
context-aware features with point clouds. 

Unified Representation
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Design choices
• Knowledge Transfer: optimize features of the student with 

guidance from the teacher during training.
• Modality Fusion: aim to better utilize all modalities in both 

training and inference stages.
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Transformer Decoder
• Transformer decoder is utilized for further object-level 

interaction in the unified voxel space.

Unified Representation
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Design choices
• Transformer Design: apply reference positions to efficiently 

sample representative features.
• Deformable Attention: use cross-attention module like that in 

Deformable DETR.

CrossAttn(q, VU(p)) = DeformAttn(q, p, VU)
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Results of  UVTR
It surpasses previous multi-modality methods and improves consistently.

Results & Analysis

Comparisons on different methods with a single model on the nuScenes val set.
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Results of  UVTR
It surpasses previous multi-modality methods and improves consistently.

Results & Analysis

Comparisons on different methods with a single model on the nuScenes test set.

23



Framework analysis
UVTR achieves robust results with dropped views and sensor noises.

Results & Analysis

Different heights Z in voxel space.
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Different operations in voxel encoder.

Different knowledge transfer settings. Different cross-modality fusion settings.



Framework analysis
UVTR achieves robust results with dropped views and sensor noises.

Results & Analysis

Robustness of dropped camera view. Robustness of sensor calibration noise.
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Future Work

Current multi-modality frameworks still exists several problems that can be 
solved in the future work:

1. Reduce computation cost: current camera-based approaches process all 
of them in the shared image backbone, which brings computational cost, 
especially for multi-frame setting.

2. Unified framework extension: current multi-modality frameworks mainly 
focuses on object detection, which can be extended to support following 
tasks, like segmentation, tracking, and planning.

3. Open-world and long tail: current work mainly focus on predefined 
vehicles, ignoring numerous long-tail instances in real world scenes, like 
unseen objects in training set.
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Q& A
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For more questions, please contact

www.yanwei-li.com
ywli@cse.cuhk.edu.hk
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