Representation for multi-modality 3D detection with transformer

Yanwei Li CUHK

1. Introduction 2. Voxel Field Fusion 3. Unified Representation 4. Results & Analysis 5. Future Work

Contents

Definition of 3D Object Detection Locate and classify 3D objects from the given points or images.

Difficulties in 3D Object Detection

- Input with image: lack accurate depth to establish structural representation for each object.
- Input with LiDAR: lack sufficient context to classify different categories for each object.
- Input with cross-modality is needed for accurate **3D** Object Detection

Input with image

Input with LiDAR 3D object detection with different input.

Overview of multi-modal 3D Object Detection Recent methods are roughly divided into Early-Fusion, Intermediate-Fusion, and Late-Fusion according to the fusion position.

Overview of multi-modality method for 3D detection [1]

[1] P3D Object Detection for Autonomous Driving: A Review and New Outlooks. arXiv, 2022.

General pipeline for cross-modality fusion Image and point cloud are respectively processed in each network. Then, features are fused for prediction.

A general pipeline for cross-modality fusion in 3D detection [2]

[2] PointAugmenting: Cross-Modal Augmentation for 3D Object Detection. In CVPR, 2021.

Key difficulties

- How to find cross-modality features? ullet
- How to align cross-modality augmentation?

Previous methods fuse in a point-to-point manner

- Find one-one correspondence across modality according to projection matrix.
- Fuse point feature and retrieved image features directly in a point-to-point manner.

Drawback: constrained by the sparsity of point cloud.

Architecture of Deep Continuous Fusion [3].

[3] Deep continuous fusion for multi-sensor 3d object detection. In ECCV, 2018.

Point-to-point fusion

Point-to-point feature retrieve process [3].

Previous methods damage consistent augmentation

- LiDAR: scene-level flipping, rescaling, and rotation.
- Image: no image-level data augmentation.
- **Cross-modality:** inverse LiDAR point to find correspondence. ightarrow

Drawback: out-of-sync augmentation damage consistency.

Classic multi-modality transformation flow [4].

[4] Exploring Data Augmentation for Multi-Modality 3D Object Detection. arXiv:2012.12741, 2020.

Point-to-point fusion

Voxel Field Fusion maintain the consistency

- Feature representation: project augmented image features to voxel space and represent in a point-to-ray manner
- Data augmentation: synced image-level augmentation according to that in point cloud.

The framework for 3D detection with voxel field fusion.

[5] Voxel Field Fusion for 3D Object Detection. In CVPR, 2022.

Point-to-ray fusion

Mixed Augmentor

- Sample-added: supplement the RGB data of sampled 3D objects in a copy-paste manner, i.e., 3D GT-sampling.
- Sample-static: scene-level augmentation combined with image-level flipping and rescaling.

Voxel Field Fusion process.

Corresponding operations in the mixed augmentor.

type	Point operation	Image oper
Sample-added	GT-sampling	Copy-paste
Sample-static	Flip Rescale Rotate	Image-flip Image-resc Reproject

Mixed Augmentor

- Sample-added: supplement the RGB data of sampled 3D objects in a copy-paste manner, i.e., 3D GT-sampling.
- Sample-static: scene-level augmentation combined with image-level flipping and rescaling.

Ray Constructor

Establish the cross-modality correspondence from voxel bin lacksquare v_i to image pixels p_i .

$$p_i = v_j \mathbf{T}_{\text{Voxel} \to \text{Image}}^T, \forall v_j \in \mathscr{R}_i.$$

Voxel Field Fusion process.

Corresponding operations in the mixed augmentor.

type	Point operation	Image oper
Sample-added	GT-sampling	Copy-paste
Sample-static	Flip Rescale Rotate	Image-flip Image-resc Reproject

Efficient learnable sampler

• Sample vital image featur the importance of foreground objects

Design choices

- Sample by uniformity: uniformly sample image features for ray construction.
- Sample by density: sample image features for ray construction according to the density of projected LiDAR points.
- Sample by sparsity: sample image features for ray construction according to the density of projected LiDAR points.

.

(c) Sample by sparsity

(b) Sample by density

⁽d) Sample by importance

Toy examples of different sampling methods.

Efficient learnable sampler

• Sample vital image featur the importance of foreground objects.

Design choices

- Sample by uniformity: uniformly sample image features for ray construction.
- Sample by density: sample image features for ray construction according to the density of projected LiDAR points.
- Sample by sparsity: sample image features for ray construction according to the density of projected LiDAR points.
- Sample by importance: sample image features \bigcirc construction according to the predicted importance.

for ray

(b) Sample by density

(c) Sample by sparsity

⁽d) Sample by importance

Toy examples of different sampling methods.

Ray-voxel interaction

• Ray-wise fusion extends the second fuses, as well as newly generates, the high-responded teatures along the ray.

Design choices

- Single fusion: only fuses the single point as traditional method.
- Local aggregation: aggregates all the neighboring features to the anchor voxel within a radius along the ray.
- Local propagation: propagates the feature of anchor voxel to all the neighboring points within a radius along the ray.

(c) Local fusion with propagation

(d) Ray-wise fusion along the ray

Toy examples of different fusion methods.

Ray-voxel interaction

• Ray-wise fusion extends the second fuses, as well as newly generates, the high-responded teatures along the ray.

- Single fusion: only fuses the single point as traditional method.
- Local aggregation: aggregates all the neighboring features to the anchor voxel within a radius along the ray.
- Local propagation: propagates the feature of anchor voxel to all the neighboring points within a radius along the ray.
- Ray-wise fusion: (1) Training: distributes the existence probability of each point within a radius along the ray; (2) Inference: fuses all the high-responded points.

 $\widehat{\mathscr{F}}(x_j, y_j, z_j) = \mathscr{F}(x_j, y_j, z_j) + \omega_j f([\mathbf{F}_{l,i}^I, \mathbf{F}_{l,v_i}^\prime]).$

Voxel Field Fusion

Backbone

Voxel Field Fusion process.

(a) Single fusion with each point

(c) Local fusion with propagation

(b) Local fusion with aggregation

(d) Ray-wise fusion along the ray

Toy examples of different fusion methods.

Weakness in previous work

- Using point cloud for feature reference reduces robustness of camera-only models.
- Previous approaches introduces semantic ambiguity.

A more unified representation is desired to bridge modality gap and facilitate interactions.

UVTR for unified representation

- Modality-specific Space: construct unified representation.
- **Cross-modality interaction: feature learning across spaces.**
- Transformer decoder: object-level interaction and prediction.

[6] Unifying Voxel-based Representation with Transformer for 3D Object Detection. arXiv:2206.00630, 2022.

Similar feature representation and data augmentation for different modalities.

Modality-specific Space

• Given images captured from cameras and point cloud from LiDAR, different branches are utilized to generate and enhance voxel space for each modality

Design choices

• Image Voxel Space: construct voxel space from multi-view images using shared backbone and predicted depth.

Generate the depth distribution $\mathbf{D}_{I}(u, v) = \operatorname{Softmax}(\operatorname{Conv}(\mathbf{F}_{I})(u, v))$

Transfer image feature to voxel space

 $\mathbf{V}_{I}(x, y, z) = \mathbf{D}_{I}(u, v, d) \times \mathbf{F}_{I}(u, v)$

Modality-specific Space

• Given images captured from cameras and point cloud from LiDAR, different branches are utilized to generate and enhance voxel space for each modality.

Design choices

- Image Voxel Space: construct voxel space from multi-view images using shared backbone and predicted depth.
- Point Voxel Space: construct voxel space from point cloud using sparse convolution.
- **Voxel Encoder:** feature interaction among adjacent voxels. \bigcirc

Cross-modality Interaction

• The cross-modality interaction is proposed from two folds, i.e., transferring geometry-aware knowledge to images and fusing context-aware features with point clouds.

Design choices

• Knowledge Transfer: optimize features of the student with guidance from the teacher during training.

Feature distance for knowledge transfer

 $d_{KT} = PL_2(\mathbf{T}_P(x, y, z), \mathbf{S}_I(x, y, z))$

Optimization objective for knowledge transfer

$$\mathscr{L}_{KT} = \frac{1}{N} \sum_{i} (d_{KT})$$

Details in the knowledge transfer.

Cross-modality Interaction

• The cross-modality interaction is proposed from two folds, i.e., transferring geometry-aware knowledge to images and fusing context-aware features with point clouds.

Design choices

- Knowledge Transfer: optimize features of the student with guidance from the teacher during training.
- Modality Fusion: aim to better utilize all modalities in both training and inference stages.

Transformer Decoder

• Transformer decoder is utilized for further object-level interaction in the unified voxel space.

Design choices

- Transformer Design: apply reference positions to efficiently sample representative features.
- **Deformable Attention:** use cross-attention module like that in Deformable DETR.

 $CrossAttn(q, V_U(p)) = DeformAttn(q, p, V_U)$

Results of UVTR It surpasses previous multi-modality methods and improves consistently.

Comparisons on different methods with a single model on the nuScenes val set.

Method	Backbone	NDS (%)	mAP (%)	mATE↓	mASE↓	mAOE↓	mAVE↓	mAAE↓
			LiDAR-ba	sed				
CenterPoint [†] [24]	V0.1	64.9	56.6	0.291	0.252	0.324	0.284	0.189
UVTR-L	V0.1	66.4	59.3	0.345	0.259	0.313	0.218	0.185
UVTR-L	V0.075	67.7	60.9	0.334	0.257	0.300	0.204	0.182
			Camera-ba	sed				
DETR3D [8]	R101	42.5	34.6	0.773	0.268	0.383	0.842	0.216
UVTR-C	R50	41.9	33.3	0.793	0.276	0.454	0.760	0.196
UVTR-C	R 101	44.1	36.2	0.758	0.272	0.410	0.758	0.203
UVTR-CS	R50	47.2	36.2	0.756	0.276	0.399	0.467	0.189
UVTR-CS	R101	48.3	37.9	0.731	0.267	0.350	0.510	0.200
UVTR-L2C	R101	45.0	37.2	0.735	0.269	0.397	0.761	0.193
UVTR-L2CS	R101	48.8	39.2	0.720	0.268	0.354	0.534	0.206
LiDAR+Camera								
FUTR3D [9]	V0.075-R101	68.3	64.5	-	-	-	-	-
UVTR-M	V0.075-R101	70.2	65.4	0.332	0.258	0.268	0.212	0.177

Results of UVTR It surpasses previous multi-modality methods and improves consistently.

Method	Backbone	NDS (%)	mAP (%)	mATE↓	mASE↓	mAOE↓	mAVE↓	mAAE↓
LiDAR-based								
3DSSD [45]	Point-based	56.4	42.6	-	-	-	-	-
CenterPoint [24]	V0.075	65.5	58.0	-	-	-	-	-
HotSpotNet [46]	V0.1	66.0	59.3	0.274	0.239	0.384	0.333	0.133
AFDetV2 [47]	V0.075	68.5	62.4	0.257	0.234	0.341	0.299	0.137
UVTR-L	V0.075	69.7	63.9	0.302	0.246	0.350	0.207	0.123
		Car	nera-based					
FCOS3D [27]	R101	42.8	35.8	0.690	0.249	0.452	1.434	0.124
DD3D [48]	V2-99	47.7	41.8	0.572	0.249	0.368	1.014	0.124
DETR3D [8]	V2-99	47.9	41.2	0.641	0.255	0.394	0.845	0.133
BEVDet [6]	V2-99	48.8	42.4	0.524	0.242	0.373	0.950	0.148
PETR [10]	V2-99	50.4	44.1	0.593	0.249	0.383	0.808	0.132
UVTR-L2C	V2-99	52.2	45.2	0.612	0.256	0.385	0.664	0.125
UVTR-L2CS3	V2-99	55.1	47.2	0.577	0.253	0.391	0.508	0.123
LiDAR+Camera								
FusionPainting [49]	V0.075-R50	70.4	66.3	-	-	-	-	-
MVP [32]	V0.075-DLA34	70.5	66.4	-	-	-	-	-
PointAugmenting [50]	V0.075-DLA34	71.0	66.8	-	-	-	-	-
UVTR-M	V0.075-R101	71.1	67.1	0.306	0.245	0.351	0.225	0.124

Comparisons on different methods with a single model on the nuScenes test set.

Framework analysis UVTR achieves robust results with dropped views and sensor noises.

height NDS(%) modality mAP(%) 31.4 24.9 27.0 5 34.5 Camera 28.7 11 35.6 54.4 62.8 LiDAR 5 63.8 55.5 11 63.8 56.3

Different heights Z in voxel space.

Different knowledge transfer settings.

student	teacher	NDS(%)	mAP(%)
	_	34.5	27.0
Camera	CS	36.3	28.1
	LiDAR	36.4	28.2
	Multi-mod	37.1	28.8
	_	63.8	55.5
LIDAK	Multi-mod	64.4	56.1

Different operations in voxel encoder.

modality	type	NDS(%)	mAP(%)
Camera	None	12.0	2.5
	Conv2D	31.9	24.8
	Conv3D	34.5	27.0
LiDAR	None	63.1	54.3
	Conv2D	63.2	54.6
	Conv3D	63.8	55.5

Different cross-modality fusion settings.

camera	lidar	NDS(%)	mAP(%)
R50	_	34.5	27.0
_	V0.1	63.8	55.5
P50	V0.1	65.1	59.0
K30	V0.075	65.6	60.1
D 101	V0.1	65.4	59.4
K101	V0.075	66.3	61.0

Framework analysis UVTR achieves robust results with dropped views and sensor noises.

Robustness of dropped camera view.

Future Work

solved in the future work:

- especially for multi-frame setting.
- tasks, like segmentation, tracking, and planning.
- unseen objects in training set.

Current multi-modality frameworks still exists several problems that can be

1. Reduce computation cost: current camera-based approaches process all of them in the shared image backbone, which brings computational cost,

2. Unified framework extension: current multi-modality frameworks mainly focuses on object detection, which can be extended to support following

3. Open-world and long tail: current work mainly focus on predefined

vehicles, ignoring numerous long-tail instances in real world scenes, like

For more questions, please contact <u>www.yanwei-li.com</u> ywli@cse.cuhk.edu.hk

Slides

