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Introduction

Definition of 3D Object Detection

Locate and classify 3D objects from the given
boints or images.

Input with image

Difficulties in 3D Object Detection

* Input with image: lack accurate depth to establish e .
structural representation for each object. ' =

e Input with LiDAR: lack sufficient context to classify i
different categories for each object. Input with LiDAR

Input with cross-modality is needed for accurate 3D object detection with different input.

3D Object Detection




Introduction

Overview of multi-modal 3D Object Detection

Recent methods are roughly divided into Early-Fusion,
, and Late-Fusion according to the fusion position.

MV3D F-PointNet PointFusion AVOD General-Fusion ContFuse HDNet RoarNet F-ConvNet MVX-Net PointPainting 3D-CVF  RadarNet CLOCs MapFusion PointAugmenting Fast-CLOCs  TransFusion @ FUTR3D VF-Fusion BEVFusion
(Chenetal) (Qietal) (Xuetal) (Kuetal) (Duetal) (Liangetal) (Yang etal.) (Shin et al.) (Wang et al.) (Sindagi et al.) (Voraetal) (Yoo etal) (Yangetal) (Pangetal.) (Fangetal.) (Wangetal.) (Pang et al.) (Baietal) (Chenetal) (Lietal) (Liuetal.)

2017 2018 2019 2020 2021 2022

PI-RCNN R-RPN MVDNet  F-PointPillars
—) Camera-LiDAR Early-Fusion based 3D Object Detector (Xieetal.) (Nabatietal) (Qian etal) (Paigwar et al)
—) Camera-LiDAR Intermediate-Fusion based 3D Object Detector ‘ ‘ ‘
— Camera-LiDAR Late-Fusion based 3D Object Detector Complexer—YOLO RV-Det EPNet MMF CenterFusion FuSionPainting MVP DeepFuSion CAT-Det

] , Chadwick et al. Huang et al.) (Liang et al. Nabati et al. (Xu et al.) (Yin et al.) (Lietal) (Zhang et al.)
——) R adar-Fusion based 3D Object Detector (Simon et al.) ( ) ( & ) ( & ) )

——) )\ap-Fusion based 3D Object Detector

Overview. of multi-modality method for 3D detection [ ]



Introduction

General pipeline for cross-modality fusion Key difficulties

Image and point cloud are respectively processed in * How to find cross-modality features?
each network. Then, features are fused for prediction. * How to align cross-modality augmentation?
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A general pipeline for cross-modality fusion in 3D detection [2]



Introduction

Previous methods fuse in a point-to-point manner

* Find one-one correspbondence across modality according to
brojection matrix.

* Fuse point feature and retrieved image features directly in a
boint-to-point manner. Voxel

Representation

Drawback: constrained by the sparsity of point cloud.
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Architecture of Deep Continuous Fusion [3]. Point-to-point feature retrieve process [3].




Introduction

Previous methods damage consistent augmentation
e |iDAR:scene-level flipping, rescaling, and rotation.

* |mage: no image-level data augmentation.

e Cross-modality: inverse LiDAR point to find correspondence.

Voxel
Representation

Drawback: out-of-sync augmentation damage consistency. Point-to-point fusion
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Voxel Field Fusion

Voxel Field Fusion maintain the consistency

* [eature representation: project augmented image features to
voxel spbace and represent in a point-to-ray manner.

 Data augmentation: synced image-level augmentation
according to that in point cloud. Augmented Voxel Field

Image Representation

Camera

Voxel Sampler Ray-wise Fusion

Feature Encoder Voxel Field Fusion Backbone

The framework for 3D detection with voxel field fusion.




Voxel Field Fusion

Mixed Augmentor
o Sample-added: supplement the RGB data of sampled 3D Flaaen
objects in a copy-paste manner, i.e., 3D GIl-sampling. f %

e Sample-static: scene-level augmentation combined with
image-level flibping and rescaling.

Feature Encoder

Voxel Field Fusion process.

Corresponding operations in the mixed augmentor.

type Point operation Image operation
Sample-added GT-sampling Copy-paste
Flip Image-flip

Sample-static  Rescale Image-rescale
Rotate Reproject




Voxel Field Fusion

Mixed Augmentor
e Sample-added: supplement the RGB data of sampled 3D LK
objects in a copy-paste manner, i.e., 3D GT-sampling. %

e Sample-static: scene-level augmentation combined with
image-level flibping and rescaling.

Feature Encoder

Voxel Field Fusion process.

Corresponding operations in the mixed augmentor.

Ray Constructor
o Establish the cross-modality correspondence from voxel bin type Point operation  Image operation

Vj to Im age PiXCIS D;- Sample-added GT-sampling Copy-paste
Flip Image-flip
— I Sample-static ~ Rescale Image-rescale
Pi = VjTVoxel—>Image’ VVJ- = ‘%i - P g

Rotate Reproject



Voxel Field Fusion

Efficient learnable sampler

e Sample vital image features for ray construction according to
the importance of foreground objects.

Design choices

e Sample by uniformity: uniformly sample image features for ray
construction.

 Sample by density: sample image features for ray construction
according to the density of projected LiDAR points.

e Sample by sparsity: sample image features for ray construction

according to the density of projected LiDAR points.

(c) Sample by sparsity (d) Sample by importance

Toy examples of different sampling methods.



Voxel Field Fusion

Efficient learnable sampler
e Sample vital image features for ray construction according to

the importance of foreground objects.

Design choices

Sample by : uniformly sample image features for ray

construction.

Sample by : sample image features for ray construction
according to the density of projected LiDAR points.

Sample by :sample image features for ray construction

according to the density of projected LiDAR points.
Sample by importance: sample image features for ray

construction according to the predicted importance.

Voxel Field Fusion Backbone

Voxel Field Fusion process.

P

(b) Sample by density

(c) Sample by sparsity (d) Sample by importance



Voxel Field Fusion

Ray-voxel interaction

* Ray-wise fusion extends the operation and fuses, as well as
newly generates, the high-responded features along the ray.

Design choices

e Single fusion:only fuses the single point as traditional method.

* |ocal aggregation: aggregates all the neighboring features to
the anchor voxel within a radius along the ray.

* |ocal propagation: propagates the feature of anchor voxel to

all the neighboring points within a radius along the ray.

(a) Single fusion with each point (b) Local fusion with aggregation

(c) Local fusion with propagation (d) Ray-wise fusion along the ray

Toy. examples of: different fusion methods



Voxel Field Fusion

Ray-voxel interaction

* Ray-wise fusion extends the operation and fuses, as well as
newly generates, the high-responded features along the ray.

Design choices

e Single fusion:only fuses the single point as traditional method.

* |ocal aggregation: aggregates all the neighboring features to
the anchor voxel within a radius along the ray.

* |ocal propagation: propagates the feature of anchor voxel to
all the neighboring points within a radius along the ray.

o Ray-wise fusion: (I) Training: distributes the existence
brobability of each point within a radius along the ray; (2)

Inference: fuses all the high-respbonded points.

F(5.9.5) = (5.3, 5)+ OfIF] ).

(a) Single fusion with each point (b) Local fusion with aggregation

(c) Local fusion with propagation (d) Ray-wise fusion along the ray

Toy. examples of: different fusion methods



Unified Representation

Weakness in previous work

e Using point cloud for feature reference reduces
robustness of camera-only models.

* Previous approaches introduces semantic ambiguity.

3D Conv

Pseudo Point Cloud Backbone

Pseudo point cloud transformed from image

frustrum 4

-/
g == x g =

position
)

Transformer
Feature Head Feature Decoder

BEV. K—Eﬁﬂ@ space ﬂ‘mw Image K—I‘.li!l@ Voxel [(.,a ature space ﬂ‘,@w Image i& ature

Image CNN-based Image

BEV Feature Space Image Voxel Space




Unified Representation

UVTR for unified representation

e Modality-specific Space: construct unified representation. Similar feature representation and data
* Cross-modality interaction: feature learning across spaces. augmentation for different modalities.
* [ransformer decoder: object-level interaction and prediction.
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Unified Representation

Modality-specific Space o

@ | Transform Voxel
* Given images captured from cameras and point cloud from X,

Image Backbone Image Voxel Space Knowledge
Transfer

LiDAR, different branches are utilized to generate and enhance
voxel space for each modality

Design choices

e /mage Voxel Space: construct voxel space from multi-view
images using shared backbone and predicted depth.

Point Cloud  Voxel Backbone Point Voxel Space

Generate the depth distribution
D F-_J,l
D,(u, v) = Softmax(Conv(F,)(u, v)) -

_____
------
|

| e
. ",‘

Iransfer image feature to voxel space

| Depth Distribution Image Voxel Space
Vi, y.2) = Dy, v. d) X E(u,v) ST N e —



Unified Representation

Modality-specific Space vew
* Given images captured from cameras and point cloud from
LiDAR, different branches are utilized to generate and enhance
voxel space for each modality.

Image Image Backbone

Design choices

e /mage Voxel Space: construct voxel space from multi-view
images using shared backbone and predicted depth.

o PointVoxel Space: construct voxel space from point cloud using
sparse convolution.

e \oxel Encoder: feature interaction among adjacent voxels.

d\. Voxel Backbone
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Voxel
Encoder
Image Voxel Space Knowledge
Transfer
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Encoder
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Unified Representation

Cross-modality Interaction

Voxel
* The cross-modality interaction is proposed from two folds, i.e., - n_l
transferring geometry-aware knowledge to images and fusing e
. . Knowledge
context-aware features with point clouds. m e

Voxel
Encoder Unified Voxel Space

Point Voxel Space Modality Switch

Design choices

o : optimize features of the student with
guidance from the teacher during training.

Feature distance for knowledge transfer

dKT = PLZ(TP('X9 Vs Z)a S[(xa Vs Z))

Optimization objective for knowledge transfer

Frr = L > (dir) Details in the knowledge transfer.



Unified Representation

Cross-modality Interaction
* The cross-modality interaction is proposed from two folds, i.e., m_l

transferring geometry-aware knowledge to images and fusing e
. . Knowledge
context-aware features with point clouds. m
Encoder Unified Voxel Space

Point Voxel Space Modality Switch

position

o (x'y' Z)

Design choices

o Knowledge lransfer: optimize features of the student with
guidance from the teacher during training.

e Modality Fusion: aim to better utilize all modalities in both
training and inference stages.




Unified Representation

Tr an S for m er D eCOder Vorel Object Detection
* Transformer decoder is utilized for further object-level Vi

interaction in the unified voxel space. {
Knowledge ross Attention
Transfer e : or

Voxel Vp
Encoder Unified Voxel Space Object Queries

Modality Switch Transformer Decoder

Design choices

o [ransformer Design: apply reference positions to efficiently
sample representative features.

e Deformable Attention: use cross-attention module like that in
Deformable DETR.

CrossAttn(g, V(p)) = DetormAttn(g, p, V)



Results & Analysis
Results of UVTR

It surpasses previous multi-modality methods and improves consistently.

Comparisons on different methods with a single model on the nuScenes val set.

Method Backbone NDS(%) mAP(%) mATE] mASE| mAOE] mAVE| mAAE]
LiDAR-based

CenterPoint' [24] V0.1 64.9 56.6 0291 0252 0324 0284 0.189
59.3 0.345
60.9 0.334

Camera-based

DETR3D [¥] : 34.6 0.773
UVTR-C : 33.3 0.793
UVTR-C : 36.2 0.758

UVTR-CS : 36.2 0.756
UVTR-CS : 37.9 0.731

UVTR-L2C : :
UVTR-L2CS . .

V0.075-R101




Results & Analysis
Results of UVTR

It surpasses previous multi-modality methods and improves consistently.

Comparisons on different methods with a single model on the nuScenes test set.

Method Backbone NDS(%) mAP(%) mATE|] mASE] mAOE]| mAVE]| mAAE]
LiDAR-based

3DSSD [45] Point-based 56.4 42.6
CenterPoint [24] V0.075 65.5 58.0
HotSpotNet [46] V0.1 66.0 59.3
AFDetV?2 [47] 62.4

Camera-based

FCOS3D [27] 42.8 35.8
DD3D [48] 47.7 41.8

DETR3D [¥] 47.9 41.2
BEVDet [0] 48.8 42.4
PETR [10] 50.4 44.1
UVTR-L2C

UVTR-L2CS3

LiDAR+Camera

FusionPainting [49]  V0.075-R50 70.4 66.3

MVP [32] V0.075-DLA34  70.5 66.4

PointAugmenting [50] V0.075-DLA34 71.0 66.8
V0.075-R1C




Results & Analysis

Framework analysis
UVTR achieves robust results with dropped views and sensor noises.

Different heights Z in voxel space. Different operations in voxel encoder.

modality height NDS(%) mAP(%) modality type NDS(%) mAP(%)

1 314 24.9 None 12.0 2.5
Camera 5 34.5 27.0 Camera  Conv2D 31.9 24.8
35.6 28.7 Conv3D 34.5 27.0

62.8 54.4 None 63.1 54.3
63.8 55.5 Conv2D 63.2 54.6
63.8 56.3 Conv3D 63.8 55.5

Different knowledge transfer settings. Different cross-modality fusion settings.

student teacher NDS(%) mAP(%) camera lidar NDS(%) mAP(%)

= 34.5 27.0 R50 — 34.5 27.0
36.3 28.1 — V0.1 63.8 55.5

Camera ) T
LiDAR 36.4 28.2 RS0 V0.1 65.1 59.0
Multi-mod 37.1 28.8 VvV0.075 65.6 60.1

[iDAR _ 63.8 55.5 V0.1 65.4 59.4

Multi-mod  64.4 56.1 RIOL voo075 663 61.0



Results & Analysis

Framework analysis
UVTR achieves robust results with dropped views and sensor noises.

® Camera
LiDAR2Camera

® Camera
LiDAR2Camera

® Multi-modality ® Multi-modality

c
4=

3 4 0.0 0.2 0.6 0.8 1.0
Translational Noise (m)

Robustness of sensor calibration noise.

V) 1

!Digomq; d View
Robustness of dropped camera view.




Future Work

Current multi-modality frameworks still exists several problems that can be
solved in the future work:

|. Reduce computation cost: current camera-based approaches process all
of them in the shared image backbone, which brings computational cost,
especially for multi-frame setting.

2. Unified framework extension: current multi-modality frameworks mainly
focuses on object detection, which can be extended to support following
tasks, like segmentation, tracking, and planning.

3. Open-world and long tail: current work mainly focus on predefined
vehicles, in scenes, like
unseen objects in training set.




Q& A

For more questions, please contact

www.yanwei-li.com
ywli@cse.cuhk.edu.hk
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