Fully Convolutional Networks for Panoptic Segmentation

Yanwei Li, Hengshuang Zhao, Xiaojuan Qi, Liwei Wang Zeming Li, Jian Sun, Jiaya Jia

Introduction

Definition of Panoptic Segmentation Assign each pixel with a semantic label and unique identity to Things and Stuff.

Difficulties in Panoptic Segmentation

- Conflicting properties of Things and Stuff. Things rely on instance-aware features, while Stuff need semantic-consistent characters.
- How to encode things and stuff in a unified representation?
- How to model the relationship among things, and between things and stuff?

CVPR 2021

Comparison among tasks. [1]

Introduction

Definition of Panoptic Segmentation Assign each pixel with a semantic label and unique identity to Things and Stuff.

Difficulties in Panoptic Segmentation

- Conflicting properties of Things and Stuff. Things rely on instance-aware features, while Stuff need semantic-consistent characters.
- How to encode things and stuff in a unified representation?
- How to model the relationship among things, and between things and stuff?

CVPR 2021

Comparison among tasks. [1]

Introduction

Definition of Panoptic Segmentation Assign each pixel with a semantic label and unique identity to Things and Stuff.

Difficulties in Panoptic Segmentation

- Conflicting properties of Things and Stuff. Things rely on instance-aware features, while Stuff need semantic-consistent characters.
- How to encode things and stuff in a unified representation?
- How to model the relationship among things, and between things and stuff?

CVPR 2021

Comparison among tasks. [1]

Panoptic FCN represent them uniformly

- It encodes each instance into a specific kernel and generates the prediction by convolutions directly.
- Instance-awareness for things: each thing has unique kernel.
- Semantic-consistency for stuff: identical stuff has same kernel.

Framework of Panoptic FCN.

CVPR 2021

Panoptic FCN represent them uniformly

- It encodes each instance into a specific kernel and generates the prediction by convolutions directly.
- Instance-awareness for things: each thing has unique kernel.
- <u>Semantic-consistency</u> for stuff: identical stuff has same kernel.

Framework of Panoptic FCN.

CVPR 2021

Panoptic FCN represent them uniformly

- It encodes each instance into a specific kernel and generates the prediction by convolutions directly.
- Instance-awareness for things: each thing has unique kernel.
- Semantic-consistency for stuff: identical stuff has same kernel.

Framework of Panoptic FCN.

CVPR 2021

Panoptic FCN represent them uniformly

- It encodes each instance into a specific kernel and generates the prediction by convolutions directly.
- Instance-awareness for things: each thing has unique kernel.
- Semantic-consistency for stuff: identical stuff has same kernel.

Framework of Panoptic FCN.

CVPR 2021

Panoptic FCN represent them uniformly

- It encodes each instance into a specific kernel and generates the prediction by convolutions directly.
- Instance-awareness for things: each thing has unique kernel.
- Semantic-consistency for stuff: identical stuff has same kernel.

Framework of Panoptic FCN.

CVPR 2021

Panoptic FCN represent them uniformly

- It encodes each instance into a specific kernel and generates the prediction by convolutions directly.
- Instance-awareness for things: each thing has unique kernel.
- Semantic-consistency for stuff: identical stuff has same kernel.

Framework of Panoptic FCN.

CVPR 2021

Unified loss function in Panoptic FCN • Loss function for position localization

$$\mathscr{L}_{\text{pos}}^{\text{th}} = \sum_{i} \text{FL}(\mathbf{L}_{i}^{\text{th}}, \mathbf{Y}_{i}^{\text{th}})/N_{\text{th}}$$
$$\mathscr{L}_{\text{pos}}^{\text{st}} = \sum_{i} \text{FL}(\mathbf{L}_{i}^{\text{st}}, \mathbf{Y}_{i}^{\text{st}})/W_{i}H_{i}$$
$$\mathscr{L}_{\text{pos}} = \mathscr{L}_{\text{pos}}^{\text{th}} + \mathscr{L}_{\text{pos}}^{\text{st}}$$

• Loss function for segmentation

$$WDice(\mathbf{P}_{j}, \mathbf{Y}_{j}^{seg}) = \sum_{k} w_{k}Dice(\mathbf{P}_{j,k}, \mathbf{Y}_{j}^{seg})$$
$$\mathscr{L}_{seg} = \sum_{j} WDice(\mathbf{P}_{j}, \mathbf{Y}_{j}^{seg})/(M+N)$$
$$\mathscr{L} = \lambda_{pos}\mathscr{L}_{pos} + \lambda_{seg}\mathscr{L}_{seg}$$

CVPR 2021

Framework of Panoptic FCN.

Unified loss function in Panoptic FCN • Loss function for position localization

$$\mathscr{L}_{\text{pos}}^{\text{th}} = \sum_{i} \text{FL}(\mathbf{L}_{i}^{\text{th}}, \mathbf{Y}_{i}^{\text{th}})/N_{\text{th}}$$
$$\mathscr{L}_{\text{pos}}^{\text{st}} = \sum_{i} \text{FL}(\mathbf{L}_{i}^{\text{st}}, \mathbf{Y}_{i}^{\text{st}})/W_{i}H_{i}$$
$$\mathscr{L}_{\text{pos}} = \mathscr{L}_{\text{pos}}^{\text{th}} + \mathscr{L}_{\text{pos}}^{\text{st}}$$

• Loss function for segmentation

$$WDice(\mathbf{P}_{j}, \mathbf{Y}_{j}^{seg}) = \sum_{k} w_{k}Dice(\mathbf{P}_{j,k}, \mathbf{Y}_{j}^{seg})$$
$$\mathscr{L}_{seg} = \sum_{j} WDice(\mathbf{P}_{j}, \mathbf{Y}_{j}^{seg})/(M+N)$$
$$\mathscr{L} = \lambda_{pos}\mathscr{L}_{pos} + \lambda_{seg}\mathscr{L}_{seg}$$

CVPR 2021

Framework of Panoptic FCN.

Unified loss function in Panoptic FCN • Loss function for position localization

$$\mathscr{L}_{\text{pos}}^{\text{th}} = \sum_{i} \text{FL}(\mathbf{L}_{i}^{\text{th}}, \mathbf{Y}_{i}^{\text{th}})/N_{\text{th}}$$
$$\mathscr{L}_{\text{pos}}^{\text{st}} = \sum_{i} \text{FL}(\mathbf{L}_{i}^{\text{st}}, \mathbf{Y}_{i}^{\text{st}})/W_{i}H_{i}$$
$$\mathscr{L}_{\text{pos}} = \mathscr{L}_{\text{pos}}^{\text{th}} + \mathscr{L}_{\text{pos}}^{\text{st}}$$

Loss function for segmentation \bigcirc

$$WDice(\mathbf{P}_{j}, \mathbf{Y}_{j}^{seg}) = \sum_{k} w_{k} Dice(\mathbf{P}_{j,k}, \mathbf{Y}_{j}^{seg})$$
$$\mathscr{L}_{seg} = \sum_{j} WDice(\mathbf{P}_{j}, \mathbf{Y}_{j}^{seg})/(M+N)$$
$$\mathscr{L} = \lambda_{pos} \mathscr{L}_{pos} + \lambda_{seg} \mathscr{L}_{seg}$$

CVPR 2021

Framework of Panoptic FCN.

Component-wise Analysis in Panoptic FCN Ablation studies on upper-bound and speed-accuracy. More detailed ablations please refer to the paper.

Upper-bound analysis on the COCO val set. gt position and gt class denote utilizing ground-truth position and class for kernel generation, respectively.

gt position	gt class	PQ	PQ th	PQ st	AP	mloU
Ο	\checkmark	43.6	49.3	35.0	34.5	43.8
\checkmark	Ο	49.8	52.2	46. I	38.2	54.6
\checkmark	\checkmark	65.9	64.I	68.7	45.4	86.6
		+22.3	+14.8	+33.7	+11.0	+42.8

CVPR 2021

Speed-accuracy trade-off curve on the COCO val set. The latency is measured end-to-end from single input to panoptic result.

Results of Panoptic FCN It surpasses previous box-based and box-free methods with efficiency.

Comparisons with previous methods on the COCO val set. Panoptic FCN-400, 512, and 600 denotes utilizing smaller input instead of the default setting. All of our results are achieved with single input and no flipping.

Method	Backbone	PQ	SQ	RQ	PQ th	SQth	RQ th	PQst	SQst	RQst	Device	FPS
box-based												
Panoptic FPN-Ix	Res50-FPN	39.4	77.8	48.3	45.9	80.9	55.3	29.6	73.3	37.7	V100	17.5
Panoptic FPN-3x	Res50-FPN	41.5	79.I	50.5	48.3	82.2	57.9	31.2	74.4	39.5	V100	17.5
CIAE	Res50-FPN	40.2	-	-	45.3	-	-	32.3	-	-	2080Ti	12.5
UPSNet	Res50-FPN	42.5	78.0	52.5	48.6	79.4	59.6	33.4	75.9	41.7	V100	9.1
Unifying	Res50-FPN	43.4	79.6	53.0	48.6	-	-	35.5	-	-	-	-
box-free												
DeeperLab	Xception-71	33.8	-	-	-	-	-	-	-	-	V100	10.6
Panoptic-DeepLab	Res50	35.I	-	-	-	-	-	-	-	-	V100	20
AdaptIS	Res50	35.9	-	-	40.3	-	-	29.3	-	-	-	-
PCV	Res50-FPN	37.5	77.7	47.2	40.0	78.4	50.0	33.7	76.5	42.9	1080Ti	5.7
SOLOV2	Res50-FPN	42. I	-	-	49.6	-	-	30.7	-	-	-	-
ours												
Panoptic FCN-400	Res50-FPN	40.7	80.5	49.3	44.9	82.0	54	34.3	78.1	42. I	V100	20.9
Panoptic FCN-512	Res50-FPN	42.3	80.9	51.2	47.4	82.I	56.9	34.7	79. I	42.7	V100	18.9
Panoptic FCN-600	Res50-FPN	42.8	80.6	51.6	47.9	82.6	57.2	35.I	77.4	43.I	V100	16.8
Panoptic FCN	Res50-FPN	43.6	80.6	52.6	49.3	82.6	58.9	35.0	77.6	42.9	V100	12.5
Panoptic FCN*	Res50-FPN	44.3	80.7	53.0	50.0	83.4	59.3	35.6	76.7	43.5	V100	9.2

Results of Panoptic FCN It surpasses previous box-based and box-free methods with efficiency.

Experiments on the COCO test-dev set.

Method	Backbone	PQ	PQ^{th}	PQst	Method	Backbone	PQ	PQ^{th}	PQst
box-based					box-based				
Panoptic FPN	Res101-FPN	40.9	48.3	29.7	Panoptic FPN	Res101-FPN	58.I	52.0	62.5
CIAE	DCN101-FPN	44.5	49.7	36.8	AUNet	Res101-FPN	59.0	54.8	62.I
AUNet	ResNeXt152-FPN	46.5	55.8	32.5	UPSNet	Res50-FPN	59.3	54.6	62.7
UPSNet	DCN101-FPN	46.6	53.2	36.7	Seamless	Res50-FPN	60.2	55.6	63.6
Unifying^	DCN101-FPN	47.2	53.5	37.7	Unifying	Res50-FPN	61.4	54.7	66.3
box-free					box-free				
DeeperLab	Xception-71	34.3	37.5	29.6	PCV	Res50-FPN	54.2	47.8	58.9
SSAP	Res101-FPN	36.9	40.I	32.0	DeeperLab	Xception-71	56.5	-	-
Panoptic-DeepLab	Xception-71	39.7	43.9	33.2	SSAP	Res50-FPN	58.4	50.6	-
AdaptIS	ResNeXt101	42.8	53.2	36.7	AdaptIS	Res50	59.0	55.8	61.3
Axial-DeepLab	Axial-ResNet-L	43.6	48.9	35.6	Panoptic-DeepLab	Res50	59.7	-	-
ours					ours				
Panoptic FCN	Res101-FPN	45.5	51.4	36.4	Panoptic FCN	Res50-FPN	59.6	52.I	65.I
Panoptic FCN	DCN101-FPN	47.0	53.0	37.8	Panoptic FCN*	Res50-FPN	61.4	54.8	66.6
Panoptic FCN*	DCN101-FPN	47.I	53.2	37.8					
Panoptic FCN*^	DCN101-FPN	47.5	53.7	38.2					

CVPR 2021

Experiments on the Cityscapes val set.

Experiments on the Mapillary Vistas val set.

Method	Backbone	PQ	PQ^{th}
box-based			
BGRNet	Res50-FPN	31.8	34.I
TASCNet	Res50-FPN	32.6	31.1
Seamless	Res50-FPN	36.2	33.6
box-free			
DeeperLab	Xception-71	32.0	-
AdaptIS	Res50	32.0	26.6
Panoptic-DeepLab	Res50	33.3	-
ours			
Panoptic FCN	Res50-FPN	34.8	30.6
Panoptic FCN*	Res50-FPN	36.9	32.9

Visualization of Panoptic FCN It achieve fine results on common context and traffic-related scenarios.

Visualization of panoptic results on the COCO val set.

Visualization of Panoptic FCN It achieve fine results on common context and traffic-related scenarios.

Visualization of panoptic results on the Cityscapes val set.

CVPR 2021

Visualization of panoptic results on the Mapillary Vistas val set.

Thanks

For more questions, please contact www.yanwei-li.com ywli@cse.cuhk.edu.hk

